| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414 | /* * Copyright (c) 2016, 2019 ARM Limited. * * SPDX-License-Identifier: MIT * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */#ifndef __ARM_COMPUTE_NEMATH_H__#define __ARM_COMPUTE_NEMATH_H__#if defined(ARM_MATH_NEON)/** Calculate floor of a vector. * * @param[in] val Input vector value in F32 format. * * @return The calculated floor vector. */static inline float32x4_t vfloorq_f32(float32x4_t val);/** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */static inline float32x2_t vinvsqrt_f32(float32x2_t x);/** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */static inline float32x4_t vinvsqrtq_f32(float32x4_t x);/** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */static inline float32x2_t vinv_f32(float32x2_t x);/** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */static inline float32x4_t vinvq_f32(float32x4_t x);/** Perform a 7th degree polynomial approximation using Estrin's method. * * @param[in] x      Input vector value in F32 format. * @param[in] coeffs Polynomial coefficients table. (array of flattened float32x4_t vectors) * * @return The calculated approximation. */static inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs);/** Calculate exponential * * @param[in] x Input vector value in F32 format. * * @return The calculated exponent. */static inline float32x4_t vexpq_f32(float32x4_t x);/** Calculate logarithm * * @param[in] x Input vector value in F32 format. * * @return The calculated logarithm. */static inline float32x4_t vlogq_f32(float32x4_t x);/** Calculate hyperbolic tangent. * * tanh(x) = (e^2x - 1)/(e^2x + 1) * * @note We clamp x to [-5,5] to avoid overflowing issues. * * @param[in] val Input vector value in F32 format. * * @return The calculated Hyperbolic Tangent. */static inline float32x4_t vtanhq_f32(float32x4_t val);/** Calculate n power of a number. * * pow(x,n) = e^(n*log(x)) * * @param[in] val Input vector value in F32 format. * @param[in] n   Powers to raise the input to. * * @return The calculated power. */static inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n);#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC/** Calculate hyperbolic tangent. * * tanh(x) = (e^2x - 1)/(e^2x + 1) * * @note We clamp x to [-5,5] to avoid overflowing issues. * * @param[in] val Input vector value in F32 format. * * @return The calculated Hyperbolic Tangent. */static inline float16x8_t vtanhq_f16(float16x8_t val);/** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */static inline float16x4_t vinv_f16(float16x4_t x);/** Calculate reciprocal. * * @param[in] x Input value. * * @return The calculated reciprocal. */static inline float16x8_t vinvq_f16(float16x8_t x);/** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */static inline float16x4_t vinvsqrt_f16(float16x4_t x);/** Calculate inverse square root. * * @param[in] x Input value. * * @return The calculated inverse square root. */static inline float16x8_t vinvsqrtq_f16(float16x8_t x);/** Calculate exponential * * @param[in] x Input vector value in F16 format. * * @return The calculated exponent. */static inline float16x8_t vexpq_f16(float16x8_t x);/** Calculate n power of a number. * * pow(x,n) = e^(n*log(x)) * * @param[in] val Input vector value in F16 format. * @param[in] n   Powers to raise the input to. * * @return The calculated power. */static inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n);#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC *//** Exponent polynomial coefficients */extern const float32_t exp_tab[4*8];/** Logarithm polynomial coefficients */extern const float32_t log_tab[4*8];#ifndef DOXYGEN_SKIP_THISinline float32x4_t vfloorq_f32(float32x4_t val){    static const float32_t CONST_1[4] = {1.f,1.f,1.f,1.f};    const int32x4_t   z = vcvtq_s32_f32(val);    const float32x4_t r = vcvtq_f32_s32(z);    return vbslq_f32(vcgtq_f32(r, val), vsubq_f32(r, vld1q_f32(CONST_1)), r);}inline float32x2_t vinvsqrt_f32(float32x2_t x){    float32x2_t sqrt_reciprocal = vrsqrte_f32(x);    sqrt_reciprocal             = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    sqrt_reciprocal             = vmul_f32(vrsqrts_f32(vmul_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    return sqrt_reciprocal;}inline float32x4_t vinvsqrtq_f32(float32x4_t x){    float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);    sqrt_reciprocal             = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    sqrt_reciprocal             = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    return sqrt_reciprocal;}inline float32x2_t vinv_f32(float32x2_t x){    float32x2_t recip = vrecpe_f32(x);    recip             = vmul_f32(vrecps_f32(x, recip), recip);    recip             = vmul_f32(vrecps_f32(x, recip), recip);    return recip;}inline float32x4_t vinvq_f32(float32x4_t x){    float32x4_t recip = vrecpeq_f32(x);    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);    return recip;}inline float32x4_t vtaylor_polyq_f32(float32x4_t x, const float32_t *coeffs){    float32x4_t A   = vmlaq_f32(vld1q_f32(&coeffs[4*0]), vld1q_f32(&coeffs[4*4]), x);    float32x4_t B   = vmlaq_f32(vld1q_f32(&coeffs[4*2]), vld1q_f32(&coeffs[4*6]), x);    float32x4_t C   = vmlaq_f32(vld1q_f32(&coeffs[4*1]), vld1q_f32(&coeffs[4*5]), x);    float32x4_t D   = vmlaq_f32(vld1q_f32(&coeffs[4*3]), vld1q_f32(&coeffs[4*7]), x);    float32x4_t x2  = vmulq_f32(x, x);    float32x4_t x4  = vmulq_f32(x2, x2);    float32x4_t res = vmlaq_f32(vmlaq_f32(A, B, x2), vmlaq_f32(C, D, x2), x4);    return res;}inline float32x4_t vexpq_f32(float32x4_t x){    static const float32_t CONST_LN2[4]          = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2)    static const float32_t CONST_INV_LN2[4]      = {1.4426950408f,1.4426950408f,1.4426950408f,1.4426950408f}; // 1/ln(2)    static const float32_t CONST_0[4]            = {0.f,0.f,0.f,0.f};    static const int32_t   CONST_NEGATIVE_126[4] = {-126,-126,-126,-126};    // Perform range reduction [-log(2),log(2)]    int32x4_t   m   = vcvtq_s32_f32(vmulq_f32(x, vld1q_f32(CONST_INV_LN2)));    float32x4_t val = vmlsq_f32(x, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2));    // Polynomial Approximation    float32x4_t poly = vtaylor_polyq_f32(val, exp_tab);    // Reconstruct    poly = vreinterpretq_f32_s32(vqaddq_s32(vreinterpretq_s32_f32(poly), vqshlq_n_s32(m, 23)));    poly = vbslq_f32(vcltq_s32(m, vld1q_s32(CONST_NEGATIVE_126)), vld1q_f32(CONST_0), poly);    return poly;}inline float32x4_t vlogq_f32(float32x4_t x){    static const int32_t   CONST_127[4] = {127,127,127,127};           // 127    static const float32_t CONST_LN2[4] = {0.6931471805f,0.6931471805f,0.6931471805f,0.6931471805f}; // ln(2)    // Extract exponent    int32x4_t   m   = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), vld1q_s32(CONST_127));    float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));    // Polynomial Approximation    float32x4_t poly = vtaylor_polyq_f32(val, log_tab);    // Reconstruct    poly = vmlaq_f32(poly, vcvtq_f32_s32(m), vld1q_f32(CONST_LN2));    return poly;}inline float32x4_t vtanhq_f32(float32x4_t val){    static const float32_t CONST_1[4]        = {1.f,1.f,1.f,1.f};    static const float32_t CONST_2[4]        = {2.f,2.f,2.f,2.f};    static const float32_t CONST_MIN_TANH[4] = {-10.f,-10.f,-10.f,-10.f};    static const float32_t CONST_MAX_TANH[4] = {10.f,10.f,10.f,10.f};    float32x4_t x     = vminq_f32(vmaxq_f32(val, vld1q_f32(CONST_MIN_TANH)), vld1q_f32(CONST_MAX_TANH));    float32x4_t exp2x = vexpq_f32(vmulq_f32(vld1q_f32(CONST_2), x));    float32x4_t num   = vsubq_f32(exp2x, vld1q_f32(CONST_1));    float32x4_t den   = vaddq_f32(exp2x, vld1q_f32(CONST_1));    float32x4_t tanh  = vmulq_f32(num, vinvq_f32(den));    return tanh;}inline float32x4_t vpowq_f32(float32x4_t val, float32x4_t n){    return vexpq_f32(vmulq_f32(n, vlogq_f32(val)));}#endif /* DOXYGEN_SKIP_THIS */#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC/** Exponent polynomial coefficients *//** Logarithm polynomial coefficients */#ifndef DOXYGEN_SKIP_THISinline float16x8_t vfloorq_f16(float16x8_t val){    static const float16_t CONST_1[8] = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f};    const int16x8_t   z = vcvtq_s16_f16(val);    const float16x8_t r = vcvtq_f16_s16(z);    return vbslq_f16(vcgtq_f16(r, val), vsubq_f16(r, vld1q_f16(CONST_1)), r);}inline float16x4_t vinvsqrt_f16(float16x4_t x){    float16x4_t sqrt_reciprocal = vrsqrte_f16(x);    sqrt_reciprocal             = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    sqrt_reciprocal             = vmul_f16(vrsqrts_f16(vmul_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    return sqrt_reciprocal;}inline float16x8_t vinvsqrtq_f16(float16x8_t x){    float16x8_t sqrt_reciprocal = vrsqrteq_f16(x);    sqrt_reciprocal             = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    sqrt_reciprocal             = vmulq_f16(vrsqrtsq_f16(vmulq_f16(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);    return sqrt_reciprocal;}inline float16x4_t vinv_f16(float16x4_t x){    float16x4_t recip = vrecpe_f16(x);    recip             = vmul_f16(vrecps_f16(x, recip), recip);    recip             = vmul_f16(vrecps_f16(x, recip), recip);    return recip;}inline float16x8_t vinvq_f16(float16x8_t x){    float16x8_t recip = vrecpeq_f16(x);    recip             = vmulq_f16(vrecpsq_f16(x, recip), recip);    recip             = vmulq_f16(vrecpsq_f16(x, recip), recip);    return recip;}inline float16x8_t vtanhq_f16(float16x8_t val){    const float16_t CONST_1[8]        = {1.f,1.f,1.f,1.f,1.f,1.f,1.f,1.f};    const float16_t CONST_2[8]        = {2.f,2.f,2.f,2.f,2.f,2.f,2.f,2.f};    const float16_t CONST_MIN_TANH[8] = {-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f,-10.f};    const float16_t CONST_MAX_TANH[8] = {10.f,10.f,10.f,10.f,10.f,10.f,10.f,10.f};    const float16x8_t x     = vminq_f16(vmaxq_f16(val, vld1q_f16(CONST_MIN_TANH)), vld1q_f16(CONST_MAX_TANH));    const float16x8_t exp2x = vexpq_f16(vmulq_f16(vld1q_f16(CONST_2), x));    const float16x8_t num   = vsubq_f16(exp2x, vld1q_f16(CONST_1));    const float16x8_t den   = vaddq_f16(exp2x, vld1q_f16(CONST_1));    const float16x8_t tanh  = vmulq_f16(num, vinvq_f16(den));    return tanh;}inline float16x8_t vtaylor_polyq_f16(float16x8_t x, const float16_t *coeffs){    const float16x8_t A   = vaddq_f16(&coeffs[8*0], vmulq_f16(&coeffs[8*4], x));    const float16x8_t B   = vaddq_f16(&coeffs[8*2], vmulq_f16(&coeffs[8*6], x));    const float16x8_t C   = vaddq_f16(&coeffs[8*1], vmulq_f16(&coeffs[8*5], x));    const float16x8_t D   = vaddq_f16(&coeffs[8*3], vmulq_f16(&coeffs[8*7], x));    const float16x8_t x2  = vmulq_f16(x, x);    const float16x8_t x4  = vmulq_f16(x2, x2);    const float16x8_t res = vaddq_f16(vaddq_f16(A, vmulq_f16(B, x2)), vmulq_f16(vaddq_f16(C, vmulq_f16(D, x2)), x4));    return res;}inline float16x8_t vexpq_f16(float16x8_t x){    // TODO (COMPMID-1535) : Revisit FP16 approximations    const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));    const float32x4_t x_low  = vcvt_f32_f16(vget_low_f16(x));    const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vexpq_f32(x_low)), vexpq_f32(x_high));    return res;}inline float16x8_t vlogq_f16(float16x8_t x){    // TODO (COMPMID-1535) : Revisit FP16 approximations    const float32x4_t x_high = vcvt_f32_f16(vget_high_f16(x));    const float32x4_t x_low  = vcvt_f32_f16(vget_low_f16(x));    const float16x8_t res = vcvt_high_f16_f32(vcvt_f16_f32(vlogq_f32(x_low)), vlogq_f32(x_high));    return res;}inline float16x8_t vpowq_f16(float16x8_t val, float16x8_t n){    // TODO (giaiod01) - COMPMID-1535    float32x4_t n0_f32   = vcvt_f32_f16(vget_low_f16(n));    float32x4_t n1_f32   = vcvt_f32_f16(vget_high_f16(n));    float32x4_t val0_f32 = vcvt_f32_f16(vget_low_f16(val));    float32x4_t val1_f32 = vcvt_f32_f16(vget_high_f16(val));    float32x4_t res0_f32 = vexpq_f32(vmulq_f32(n0_f32, vlogq_f32(val0_f32)));    float32x4_t res1_f32 = vexpq_f32(vmulq_f32(n1_f32, vlogq_f32(val1_f32)));    return vcombine_f16(vcvt_f16_f32(res0_f32), vcvt_f16_f32(res1_f32));}#endif /* DOXYGEN_SKIP_THIS */#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */#endif#endif /* __ARM_COMPUTE_NEMATH_H__ */
 |