mux.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261
  1. #include "at32f403a_407.h"
  2. #include "mux.h"
  3. #include "FreeRTOS.h"
  4. #include "task.h"
  5. #include <stdbool.h>
  6. void mux_task(void *argument);
  7. /* -------------------------------------------------------------------------- */
  8. #if defined (MDIO_88)
  9. mux_channel_t leds[LED_NUMBER] = {
  10. {INP_1, {0, 0, 0}, LED_OFF, 0},
  11. {INP_2, {0, 0, 0}, LED_OFF, 0},
  12. {INP_3, {0, 0, 0}, LED_OFF, 0},
  13. {INP_4, {0, 0, 0}, LED_OFF, 0},
  14. {INP_5, {0, 1, 1}, LED_OFF, 0},
  15. {INP_6, {0, 1, 1}, LED_OFF, 0},
  16. {INP_7, {0, 1, 1}, LED_OFF, 0},
  17. {INP_8, {0, 1, 1}, LED_OFF, 0},
  18. {OUT_1_G, {1, 0, 0}, LED_OFF, 0},
  19. {OUT_2_G, {1, 0, 0}, LED_OFF, 0},
  20. {OUT_3_G, {1, 0, 0}, LED_OFF, 0},
  21. {OUT_4_G, {1, 0, 0}, LED_OFF, 0},
  22. {OUT_1_R, {0, 1, 0}, LED_OFF, 0},
  23. {OUT_2_R, {0, 1, 0}, LED_OFF, 0},
  24. {OUT_3_R, {0, 1, 0}, LED_OFF, 0},
  25. {OUT_4_R, {0, 1, 0}, LED_OFF, 0},
  26. {STATUS_G, {1, 1, 0}, LED_OFF, 0},
  27. {STATUS_R, {1, 1, 0}, LED_OFF, 0},
  28. {RX_G, {1, 1, 0}, LED_OFF, 0},
  29. {TX_R, {1, 1, 0}, LED_OFF, 0},
  30. {OUT_5_R, {0, 0, 1}, LED_OFF, 0},
  31. {OUT_6_R, {0, 0, 1}, LED_OFF, 0},
  32. {OUT_7_R, {0, 0, 1}, LED_OFF, 0},
  33. {OUT_8_R, {0, 0, 1}, LED_OFF, 0},
  34. {OUT_5_G, {1, 0, 1}, LED_OFF, 0},
  35. {OUT_6_G, {1, 0, 1}, LED_OFF, 0},
  36. {OUT_7_G, {1, 0, 1}, LED_OFF, 0},
  37. {OUT_8_G, {1, 0, 1}, LED_OFF, 0}
  38. };
  39. #endif
  40. /* -------------------------------------------------------------------------- */
  41. #if defined (MAI_12)
  42. mux_channel_t leds[LED_NUMBER] = {
  43. {IO_1_G, {0, 0, 0}, LED_OFF, 0},
  44. {IO_1_R, {0, 0, 0}, LED_OFF, 0},
  45. {IO_2_G, {0, 0, 0}, LED_OFF, 0},
  46. {IO_2_R, {0, 0, 0}, LED_OFF, 0},
  47. {IO_3_G, {1, 0, 0}, LED_OFF, 0},
  48. {IO_3_R, {1, 0, 0}, LED_OFF, 0},
  49. {IO_4_G, {1, 0, 0}, LED_OFF, 0},
  50. {IO_4_R, {1, 0, 0}, LED_OFF, 0},
  51. {IO_5_G, {0, 1, 0}, LED_OFF, 0},
  52. {IO_5_R, {0, 1, 0}, LED_OFF, 0},
  53. {IO_6_G, {0, 1, 0}, LED_OFF, 0},
  54. {IO_6_R, {0, 1, 0}, LED_OFF, 0},
  55. {STATUS_G, {1, 1, 0}, LED_OFF, 0},
  56. {STATUS_R, {1, 1, 0}, LED_OFF, 0},
  57. {RX_G, {1, 1, 0}, LED_OFF, 0},
  58. {TX_R, {1, 1, 0}, LED_OFF, 0},
  59. {IO_7_G, {0, 0, 1}, LED_OFF, 0},
  60. {IO_7_R, {0, 0, 1}, LED_OFF, 0},
  61. {IO_8_G, {0, 0, 1}, LED_OFF, 0},
  62. {IO_8_R, {0, 0, 1}, LED_OFF, 0},
  63. {IO_9_G, {1, 0, 1}, LED_OFF, 0},
  64. {IO_9_R, {1, 0, 1}, LED_OFF, 0},
  65. {IO_10_G, {1, 0, 1}, LED_OFF, 0},
  66. {IO_10_R, {1, 0, 1}, LED_OFF, 0},
  67. {IO_11_G, {0, 1, 1}, LED_OFF, 0},
  68. {IO_11_R, {0, 1, 1}, LED_OFF, 0},
  69. {IO_12_G, {0, 1, 1}, LED_OFF, 0},
  70. {IO_12_R, {0, 1, 1}, LED_OFF, 0},
  71. };
  72. #endif
  73. /* -------------------------------------------------------------------------- */
  74. #if defined (MAO_4)
  75. mux_channel_t leds[LED_NUMBER] = {
  76. {OUT_1_G, {0, 0, 0}, LED_OFF, 0},
  77. {OUT_1_R, {0, 0, 0}, LED_OFF, 0},
  78. {OUT_2_G, {0, 0, 0}, LED_OFF, 0},
  79. {OUT_2_R, {0, 0, 0}, LED_OFF, 0},
  80. {OUT_3_G, {1, 0, 0}, LED_OFF, 0},
  81. {OUT_3_R, {1, 0, 0}, LED_OFF, 0},
  82. {OUT_4_G, {1, 0, 0}, LED_OFF, 0},
  83. {OUT_4_R, {1, 0, 0}, LED_OFF, 0},
  84. {STATUS_G, {1, 1, 0}, LED_OFF, 0},
  85. {STATUS_R, {1, 1, 0}, LED_OFF, 0},
  86. {RX_G, {1, 1, 0}, LED_OFF, 0},
  87. {TX_R, {1, 1, 0}, LED_OFF, 0},
  88. };
  89. #endif
  90. //
  91. void mux_led_init(mux_channel_t *ch)
  92. {
  93. }
  94. //
  95. void mux_gpio_init(void)
  96. {
  97. gpio_init_type gpio_initstructure;
  98. crm_periph_clock_enable(CRM_GPIOB_PERIPH_CLOCK, TRUE);
  99. crm_periph_clock_enable(CRM_GPIOD_PERIPH_CLOCK, TRUE);
  100. crm_periph_clock_enable(CRM_GPIOE_PERIPH_CLOCK, TRUE);
  101. // LED_COL
  102. // COL_1 - PD6
  103. // COL_2 - PD7
  104. // COL_3 - PB6
  105. // COL_4 - PB7
  106. gpio_initstructure.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  107. gpio_initstructure.gpio_pull = GPIO_PULL_NONE;
  108. gpio_initstructure.gpio_mode = GPIO_MODE_OUTPUT;
  109. gpio_initstructure.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  110. gpio_initstructure.gpio_pins = GPIO_PINS_6 | GPIO_PINS_7;
  111. gpio_init(GPIOB, &gpio_initstructure);
  112. gpio_initstructure.gpio_pins = GPIO_PINS_6 | GPIO_PINS_7;
  113. gpio_init(GPIOD, &gpio_initstructure);
  114. gpio_bits_reset(GPIOB, GPIO_PINS_6 | GPIO_PINS_7);
  115. gpio_bits_reset(GPIOD, GPIO_PINS_6 | GPIO_PINS_7);
  116. // LED_LINE (низкий уровень на пине = высокий уровень на входе MUX)
  117. // LINE_0 - PE3
  118. // LINE_1 - PE2
  119. // LINE_2 - PB9
  120. gpio_initstructure.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
  121. gpio_initstructure.gpio_pull = GPIO_PULL_NONE;
  122. gpio_initstructure.gpio_mode = GPIO_MODE_OUTPUT;
  123. gpio_initstructure.gpio_drive_strength = GPIO_DRIVE_STRENGTH_STRONGER;
  124. gpio_initstructure.gpio_pins = GPIO_PINS_2 | GPIO_PINS_3;
  125. gpio_init(GPIOE, &gpio_initstructure);
  126. gpio_initstructure.gpio_pins = GPIO_PINS_9;
  127. gpio_init(GPIOB, &gpio_initstructure);
  128. gpio_bits_reset(GPIOE, GPIO_PINS_2 | GPIO_PINS_3);
  129. gpio_bits_reset(GPIOB, GPIO_PINS_9);
  130. }
  131. //
  132. void mux_led_proc(void)
  133. {
  134. uint8_t shift = 0;
  135. bool flag = false;
  136. for (uint8_t i = 0; i < LED_NUMBER/4; i++)
  137. {
  138. leds[shift].line[0] ? (LINE_0_RESET) : (LINE_0_SET);
  139. leds[shift].line[1] ? (LINE_1_RESET) : (LINE_1_SET);
  140. leds[shift].line[2] ? (LINE_2_RESET) : (LINE_2_SET);
  141. leds[i*4].state == LED_ON ? (COL_1_SET) : (COL_1_RESET);
  142. leds[i*4 + 1].state == LED_ON ? (COL_2_SET) : (COL_2_RESET);
  143. leds[i*4 + 2].state == LED_ON ? (COL_3_SET) : (COL_3_RESET);
  144. leds[i*4 + 3].state == LED_ON ? (COL_4_SET) : (COL_4_RESET);
  145. #if 1
  146. if (leds[i*4].state == LED_ON || leds[i*4 + 1].state == LED_ON ||
  147. leds[i*4 + 2].state == LED_ON || leds[i*4 + 3].state == LED_ON)
  148. {
  149. flag = true;
  150. vTaskDelay(1);
  151. }
  152. #endif
  153. shift += 4;
  154. }
  155. if (!flag)
  156. vTaskDelay(1);
  157. }
  158. //
  159. void mux_led_test_init(void)
  160. {
  161. LINE_0_SET;
  162. LINE_1_SET;
  163. LINE_2_SET;
  164. }
  165. //
  166. void mux_led_test_toggle(void)
  167. {
  168. static bool flag = false;
  169. if (!flag) {
  170. COL_1_SET;
  171. flag = true;
  172. }
  173. else {
  174. COL_1_RESET;
  175. flag = false;
  176. }
  177. }
  178. //
  179. void mux_led_blink(void)
  180. {
  181. for (int i = 0; i < LED_NUMBER; i++)
  182. {
  183. leds[i].state = LED_ON;
  184. vTaskDelay(100);
  185. leds[i].state = LED_OFF;
  186. }
  187. }
  188. // true - normal
  189. // false - alarm
  190. void mux_led_status(bool state)
  191. {
  192. /*
  193. if (state) {
  194. leds[STATUS_G].state = LED_ON;
  195. leds[STATUS_R].state = LED_OFF;
  196. }
  197. else {
  198. leds[STATUS_G].state = LED_OFF;
  199. leds[STATUS_R].state = LED_ON;
  200. }
  201. */
  202. }
  203. //
  204. void mux_task(void *argument)
  205. {
  206. for (;;)
  207. {
  208. mux_led_proc();
  209. }
  210. }