| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 | /***************************************************************************//** *   @file   Communication.c *   @brief  Implementation of Communication Driver for RENESAS RX62N *           Processor. *   @author DBogdan (dragos.bogdan@analog.com)******************************************************************************** * Copyright 2012(c) Analog Devices, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: *  - Redistributions of source code must retain the above copyright *    notice, this list of conditions and the following disclaimer. *  - Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in *    the documentation and/or other materials provided with the *    distribution. *  - Neither the name of Analog Devices, Inc. nor the names of its *    contributors may be used to endorse or promote products derived *    from this software without specific prior written permission. *  - The use of this software may or may not infringe the patent rights *    of one or more patent holders.  This license does not release you *    from the requirement that you obtain separate licenses from these *    patent holders to use this software. *  - Use of the software either in source or binary form, must be run *    on or directly connected to an Analog Devices Inc. component. * * THIS SOFTWARE IS PROVIDED BY ANALOG DEVICES "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL ANALOG DEVICES BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, INTELLECTUAL PROPERTY RIGHTS, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ********************************************************************************* *   SVN Revision: 381*******************************************************************************//******************************************************************************//* Include Files                                                              *//******************************************************************************/#include "Communication.h"/***************************************************************************//** * @brief Initializes the SPI communication peripheral. * * @param lsbFirst - Transfer format (0 or 1). *                   Example: 0x0 - MSB first. *                            0x1 - LSB first. * @param clockFreq - SPI clock frequency (Hz). *                    Example: 1000 - SPI clock frequency is 1 kHz. * @param clockPol - SPI clock polarity (0 or 1). *                   Example: 0x0 - idle state for SPI clock is low. *	                          0x1 - idle state for SPI clock is high. * @param clockPha - SPI clock phase (0 or 1). *                   Example: 0x0 - data is latched on the leading edge of SPI *                                  clock and data changes on trailing edge. *                            0x1 - data is latched on the trailing edge of SPI *                                  clock and data changes on the leading edge. * * @return 0 - Initialization failed, 1 - Initialization succeeded.*******************************************************************************/unsigned char SPI_Init(unsigned char lsbFirst,                       unsigned long clockFreq,                       unsigned char clockPol,                       unsigned char clockPha){	MISOA_PIN_IN;	MOSIA_PIN_OUT;    ST7579_CS_PIN_OUT;    ST7579_CS_HIGH;    AD7793_CS_PIN_OUT;    AD7793_CS_HIGH;	R_SPI_Create(0,							// Channel selection.				 PDL_SPI_MODE_SPI_MASTER |	// Connection mode.				 PDL_SPI_PIN_A |			// A pins for signal MISO, MOSI, RSPCK, SSL0, SSL1, SSL2 and SSL3.				 PDL_SPI_PIN_MOSI_IDLE_LOW,	// The MOSI output state when no SSLn pin is active.				 PDL_SPI_FRAME_1_1,			// Frame configuration selection.				 PDL_NO_DATA,				// Extended timing control - default settings.                 0x80000000);				// Bit rate or register value.	R_SPI_Command(0,						// Channel selection.				  0,						// Command selection.				  PDL_SPI_CLOCK_MODE_3 |	// Clock is low when idle; data is sampled on the rising edge.				  PDL_SPI_DIV_8 |			// Bit rate (specified for R_SPI_Create) : 8.				  PDL_SPI_LENGTH_8 |	    // The number of bits in the frame transfer.				  PDL_SPI_MSB_FIRST,	    // Most-significant bit first.                  PDL_NO_DATA);			    // Extended timing control - default settings.	    return(1);}/***************************************************************************//** * @brief Writes data to SPI. * * @param data - Write data buffer: *               - first byte is the chip select number; *               - from the second byte onwards are located data bytes to write. * @param bytesNumber - Number of bytes to write. * * @return Number of written bytes.*******************************************************************************/unsigned char SPI_Write(unsigned char* data,                        unsigned char bytesNumber){	unsigned char chipSelect    = data[0];	unsigned char writeData[4]	= {0, 0, 0, 0};	unsigned char byte          = 0;	for(byte = 0;byte < bytesNumber;byte ++)	{		writeData[byte] = data[byte + 1];	}    if(chipSelect == 1)    {        AD7793_CS_LOW;    }    if(chipSelect == 2)    {        ST7579_CS_LOW;    }	for(byte = 0;byte < bytesNumber;byte ++)    {        R_SPI_Transfer(0,						    		// Channel selection.                       PDL_NO_DATA,							// DMAC / DTC control.                       (unsigned long*)&writeData[byte],	// Transmit data start address.                       PDL_NO_PTR,							// Receive data start address.                       1,									// Sequence loop count.                       PDL_NO_FUNC,							// Callback function.                       0);									// Interrupt priority level.    } 	if(chipSelect == 1)	{		AD7793_CS_HIGH;	}    if(chipSelect == 2)	{		ST7579_CS_HIGH;	}	return(bytesNumber);}/***************************************************************************//** * @brief Reads data from SPI. * * @param data - As an input parameter, data represents the write buffer: *               - first byte is the chip select number; *               - from the second byte onwards are located data bytes to write. *               As an output parameter, data represents the read buffer: *               - from the first byte onwards are located the read data bytes.  * @param bytesNumber - Number of bytes to write. * * @return Number of written bytes.*******************************************************************************/unsigned char SPI_Read(unsigned char* data,                       unsigned char bytesNumber){	unsigned char chipSelect    = data[0];	unsigned char writeData[4]	= {0, 0, 0, 0};	unsigned char byte          = 0;	for(byte = 0;byte < bytesNumber;byte ++)	{		writeData[byte] = data[byte + 1];	}    if(chipSelect == 1)    {        AD7793_CS_LOW;    }    if(chipSelect == 2)    {        ST7579_CS_LOW;    }	for(byte = 0;byte < bytesNumber;byte ++)    {        R_SPI_Transfer(0,						    		// Channel selection.                       PDL_NO_DATA,							// DMAC / DTC control.                       (unsigned long*)&writeData[byte],	// Transmit data start address.                       (unsigned long*)&data[byte],			// Transmit data start address.                       1,									// Sequence loop count.                       PDL_NO_FUNC,							// Callback function.                       0);									// Interrupt priority level.    } 	if(chipSelect == 1)	{		AD7793_CS_HIGH;	}    if(chipSelect == 2)	{		ST7579_CS_HIGH;	}	return(bytesNumber);}/***************************************************************************//** * @brief Initializes the I2C communication peripheral. * * @param clockFreq - I2C clock frequency (Hz). *                    Example: 100000 - I2C clock frequency is 100 kHz. * * @return 0 - Initialization failed, 1 - Initialization succeeded.*******************************************************************************/unsigned char I2C_Init(unsigned long clockFreq){	R_IIC_Create(0,							// Channel selection.				 PDL_IIC_MODE_IIC |			// I2C Bus.				 PDL_IIC_INT_PCLK_DIV_8,	// The reference clock source,				 							// used inside the I2C module.				 PDL_NO_DATA,				// Detection configuration.				 PDL_NO_DATA,				// Slave address.				 PDL_NO_DATA,				// Slave address.				 PDL_NO_DATA,				// Slave address.				 100E3,						// Transfer rate control.				 0);						// Rise and fall time correction.	return(1);}/***************************************************************************//** * @brief Writes data to I2C. * * @param data - Write data buffer: *       - first byte is the slave address; *       - from the second byte onwards are located data bytes. * @param bytesNumber - Number of bytes to write. * * @return Number of written bytes.*******************************************************************************/unsigned char I2C_Write(unsigned char* data,                        unsigned char bytesNumber){	unsigned char slaveAddress 		= data[0];	unsigned char writeData[4]		= {0, 0, 0, 0};	unsigned char byte				= 0;	for(byte = 0;byte < bytesNumber;byte ++)	{		writeData[byte] = data[byte + 1];	}	R_IIC_MasterSend(0,					 PDL_IIC_START_ENABLE | PDL_IIC_STOP_ENABLE,					 (slaveAddress << 1 | 0x00),					 (uint8_t*)writeData,					 bytesNumber,					 PDL_NO_FUNC,					 0);	return(bytesNumber);}/***************************************************************************//** * @brief Reads data from I2C. * * @param data - Read data buffer: *		 As an input parameter data must have 2 bytes: *		 - first byte is the slave address; *		 - second byte is the register address; if this byte is 0xFF the write *         operation is not executed. *		 As an output parameter from the first byte onwards are located *		 data bytes. * @param bytesNumber - number of bytes to read. * * @return Number of read bytes.*******************************************************************************/unsigned char I2C_Read(unsigned char* data, unsigned char bytesNumber){	unsigned char slaveAddress		= data[0];	unsigned char registerAddress	= data[1];	slaveAddress = (slaveAddress << 1);    if(registerAddress != 0xFF)    {		R_IIC_MasterSend(0,						 PDL_IIC_START_ENABLE | PDL_IIC_STOP_DISABLE,						 slaveAddress,						 (uint8_t*)®isterAddress,						 1,						 PDL_NO_FUNC,						 0);	}	slaveAddress += 1;	R_IIC_MasterReceive(0,						PDL_NO_DATA,						(slaveAddress << 1 | 0x01),						(uint8_t*)data,						bytesNumber,						PDL_NO_FUNC,						0);		return(bytesNumber);}
 |