| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395 | /* * FreeRTOS Kernel V10.4.3 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates.  All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. * * https://www.FreeRTOS.org * https://github.com/FreeRTOS * *//* Standard includes. */#include <stdlib.h>#include <string.h>/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining * all the API functions to use the MPU wrappers.  That should only be done when * task.h is included from an application file. */#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE/* FreeRTOS includes. */#include "FreeRTOS.h"#include "task.h"#include "timers.h"#include "stack_macros.h"/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined * for the header files above, but not in this file, in order to generate the * correct privileged Vs unprivileged linkage and placement. */#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. *//* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting * functions but without including stdio.h here. */#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )/* At the bottom of this file are two optional functions that can be used * to generate human readable text from the raw data generated by the * uxTaskGetSystemState() function.  Note the formatting functions are provided * for convenience only, and are NOT considered part of the kernel. */    #include <stdio.h>#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */#if ( configUSE_PREEMPTION == 0 )/* If the cooperative scheduler is being used then a yield should not be * performed just because a higher priority task has been woken. */    #define taskYIELD_IF_USING_PREEMPTION()#else    #define taskYIELD_IF_USING_PREEMPTION()    portYIELD_WITHIN_API()#endif/* Values that can be assigned to the ucNotifyState member of the TCB. */#define taskNOT_WAITING_NOTIFICATION              ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */#define taskWAITING_NOTIFICATION                  ( ( uint8_t ) 1 )#define taskNOTIFICATION_RECEIVED                 ( ( uint8_t ) 2 )/* * The value used to fill the stack of a task when the task is created.  This * is used purely for checking the high water mark for tasks. */#define tskSTACK_FILL_BYTE                        ( 0xa5U )/* Bits used to recored how a task's stack and TCB were allocated. */#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB    ( ( uint8_t ) 0 )#define tskSTATICALLY_ALLOCATED_STACK_ONLY        ( ( uint8_t ) 1 )#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB     ( ( uint8_t ) 2 )/* If any of the following are set then task stacks are filled with a known * value so the high water mark can be determined.  If none of the following are * set then don't fill the stack so there is no unnecessary dependency on memset. */#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )    #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    1#else    #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    0#endif/* * Macros used by vListTask to indicate which state a task is in. */#define tskRUNNING_CHAR      ( 'X' )#define tskBLOCKED_CHAR      ( 'B' )#define tskREADY_CHAR        ( 'R' )#define tskDELETED_CHAR      ( 'D' )#define tskSUSPENDED_CHAR    ( 'S' )/* * Some kernel aware debuggers require the data the debugger needs access to be * global, rather than file scope. */#ifdef portREMOVE_STATIC_QUALIFIER    #define static#endif/* The name allocated to the Idle task.  This can be overridden by defining * configIDLE_TASK_NAME in FreeRTOSConfig.h. */#ifndef configIDLE_TASK_NAME    #define configIDLE_TASK_NAME    "IDLE"#endif#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is * performed in a generic way that is not optimised to any particular * microcontroller architecture. *//* uxTopReadyPriority holds the priority of the highest priority ready * state task. */    #define taskRECORD_READY_PRIORITY( uxPriority ) \    {                                               \        if( ( uxPriority ) > uxTopReadyPriority )   \        {                                           \            uxTopReadyPriority = ( uxPriority );    \        }                                           \    } /* taskRECORD_READY_PRIORITY *//*-----------------------------------------------------------*/    #define taskSELECT_HIGHEST_PRIORITY_TASK()                                \    {                                                                         \        UBaseType_t uxTopPriority = uxTopReadyPriority;                       \                                                                              \        /* Find the highest priority queue that contains ready tasks. */      \        while( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxTopPriority ] ) ) ) \        {                                                                     \            configASSERT( uxTopPriority );                                    \            --uxTopPriority;                                                  \        }                                                                     \                                                                              \        /* listGET_OWNER_OF_NEXT_ENTRY indexes through the list, so the tasks of \         * the  same priority get an equal share of the processor time. */                    \        listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) ); \        uxTopReadyPriority = uxTopPriority;                                                   \    } /* taskSELECT_HIGHEST_PRIORITY_TASK *//*-----------------------------------------------------------*//* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as * they are only required when a port optimised method of task selection is * being used. */    #define taskRESET_READY_PRIORITY( uxPriority )    #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION *//* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is * performed in a way that is tailored to the particular microcontroller * architecture being used. *//* A port optimised version is provided.  Call the port defined macros. */    #define taskRECORD_READY_PRIORITY( uxPriority )    portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )/*-----------------------------------------------------------*/    #define taskSELECT_HIGHEST_PRIORITY_TASK()                                                  \    {                                                                                           \        UBaseType_t uxTopPriority;                                                              \                                                                                                \        /* Find the highest priority list that contains ready tasks. */                         \        portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );                          \        configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 ); \        listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );   \    } /* taskSELECT_HIGHEST_PRIORITY_TASK() *//*-----------------------------------------------------------*//* A port optimised version is provided, call it only if the TCB being reset * is being referenced from a ready list.  If it is referenced from a delayed * or suspended list then it won't be in a ready list. */    #define taskRESET_READY_PRIORITY( uxPriority )                                                     \    {                                                                                                  \        if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \        {                                                                                              \            portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );                        \        }                                                                                              \    }#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION *//*-----------------------------------------------------------*//* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick * count overflows. */#define taskSWITCH_DELAYED_LISTS()                                                \    {                                                                             \        List_t * pxTemp;                                                          \                                                                                  \        /* The delayed tasks list should be empty when the lists are switched. */ \        configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) );               \                                                                                  \        pxTemp = pxDelayedTaskList;                                               \        pxDelayedTaskList = pxOverflowDelayedTaskList;                            \        pxOverflowDelayedTaskList = pxTemp;                                       \        xNumOfOverflows++;                                                        \        prvResetNextTaskUnblockTime();                                            \    }/*-----------------------------------------------------------*//* * Place the task represented by pxTCB into the appropriate ready list for * the task.  It is inserted at the end of the list. */#define prvAddTaskToReadyList( pxTCB )                                                                 \    traceMOVED_TASK_TO_READY_STATE( pxTCB );                                                           \    taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );                                                \    vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \    tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )/*-----------------------------------------------------------*//* * Several functions take an TaskHandle_t parameter that can optionally be NULL, * where NULL is used to indicate that the handle of the currently executing * task should be used in place of the parameter.  This macro simply checks to * see if the parameter is NULL and returns a pointer to the appropriate TCB. */#define prvGetTCBFromHandle( pxHandle )    ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )/* The item value of the event list item is normally used to hold the priority * of the task to which it belongs (coded to allow it to be held in reverse * priority order).  However, it is occasionally borrowed for other purposes.  It * is important its value is not updated due to a task priority change while it is * being used for another purpose.  The following bit definition is used to inform * the scheduler that the value should not be changed - in which case it is the * responsibility of whichever module is using the value to ensure it gets set back * to its original value when it is released. */#if ( configUSE_16_BIT_TICKS == 1 )    #define taskEVENT_LIST_ITEM_VALUE_IN_USE    0x8000U#else    #define taskEVENT_LIST_ITEM_VALUE_IN_USE    0x80000000UL#endif/* * Task control block.  A task control block (TCB) is allocated for each task, * and stores task state information, including a pointer to the task's context * (the task's run time environment, including register values) */typedef struct tskTaskControlBlock       /* The old naming convention is used to prevent breaking kernel aware debuggers. */{    volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */    #if ( portUSING_MPU_WRAPPERS == 1 )        xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */    #endif    ListItem_t xStateListItem;                  /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */    ListItem_t xEventListItem;                  /*< Used to reference a task from an event list. */    UBaseType_t uxPriority;                     /*< The priority of the task.  0 is the lowest priority. */    StackType_t * pxStack;                      /*< Points to the start of the stack. */    char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created.  Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */    #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )        StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */    #endif    #if ( portCRITICAL_NESTING_IN_TCB == 1 )        UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */    #endif    #if ( configUSE_TRACE_FACILITY == 1 )        UBaseType_t uxTCBNumber;  /*< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */        UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */    #endif    #if ( configUSE_MUTEXES == 1 )        UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */        UBaseType_t uxMutexesHeld;    #endif    #if ( configUSE_APPLICATION_TASK_TAG == 1 )        TaskHookFunction_t pxTaskTag;    #endif    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )        void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];    #endif    #if ( configGENERATE_RUN_TIME_STATS == 1 )        uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */    #endif    #if ( configUSE_NEWLIB_REENTRANT == 1 )        /* Allocate a Newlib reent structure that is specific to this task.         * Note Newlib support has been included by popular demand, but is not         * used by the FreeRTOS maintainers themselves.  FreeRTOS is not         * responsible for resulting newlib operation.  User must be familiar with         * newlib and must provide system-wide implementations of the necessary         * stubs. Be warned that (at the time of writing) the current newlib design         * implements a system-wide malloc() that must be provided with locks.         *         * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html         * for additional information. */        struct  _reent xNewLib_reent;    #endif    #if ( configUSE_TASK_NOTIFICATIONS == 1 )        volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];        volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];    #endif    /* See the comments in FreeRTOS.h with the definition of     * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */    #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */        uint8_t ucStaticallyAllocated;                     /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */    #endif    #if ( INCLUDE_xTaskAbortDelay == 1 )        uint8_t ucDelayAborted;    #endif    #if ( configUSE_POSIX_ERRNO == 1 )        int iTaskErrno;    #endif} tskTCB;/* The old tskTCB name is maintained above then typedefed to the new TCB_t name * below to enable the use of older kernel aware debuggers. */typedef tskTCB TCB_t;/*lint -save -e956 A manual analysis and inspection has been used to determine * which static variables must be declared volatile. */PRIVILEGED_DATA TCB_t * volatile pxCurrentTCB = NULL;/* Lists for ready and blocked tasks. -------------------- * xDelayedTaskList1 and xDelayedTaskList2 could be move to function scople but * doing so breaks some kernel aware debuggers and debuggers that rely on removing * the static qualifier. */PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */PRIVILEGED_DATA static List_t xDelayedTaskList1;                         /*< Delayed tasks. */PRIVILEGED_DATA static List_t xDelayedTaskList2;                         /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList;              /*< Points to the delayed task list currently being used. */PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList;      /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */PRIVILEGED_DATA static List_t xPendingReadyList;                         /*< Tasks that have been readied while the scheduler was suspended.  They will be moved to the ready list when the scheduler is resumed. */#if ( INCLUDE_vTaskDelete == 1 )    PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */    PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;#endif#if ( INCLUDE_vTaskSuspend == 1 )    PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */#endif/* Global POSIX errno. Its value is changed upon context switching to match * the errno of the currently running task. */#if ( configUSE_POSIX_ERRNO == 1 )    int FreeRTOS_errno = 0;#endif/* Other file private variables. --------------------------------*/PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;PRIVILEGED_DATA static volatile BaseType_t xYieldPending = pdFALSE;PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle = NULL;                          /*< Holds the handle of the idle task.  The idle task is created automatically when the scheduler is started. *//* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists. * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority * to determine the number of priority lists to read back from the remote target. */const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;/* Context switches are held pending while the scheduler is suspended.  Also, * interrupts must not manipulate the xStateListItem of a TCB, or any of the * lists the xStateListItem can be referenced from, if the scheduler is suspended. * If an interrupt needs to unblock a task while the scheduler is suspended then it * moves the task's event list item into the xPendingReadyList, ready for the * kernel to move the task from the pending ready list into the real ready list * when the scheduler is unsuspended.  The pending ready list itself can only be * accessed from a critical section. */PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;#if ( configGENERATE_RUN_TIME_STATS == 1 )/* Do not move these variables to function scope as doing so prevents the * code working with debuggers that need to remove the static qualifier. */    PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL;    /*< Holds the value of a timer/counter the last time a task was switched in. */    PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */#endif/*lint -restore *//*-----------------------------------------------------------*//* File private functions. --------------------------------*//** * Utility task that simply returns pdTRUE if the task referenced by xTask is * currently in the Suspended state, or pdFALSE if the task referenced by xTask * is in any other state. */#if ( INCLUDE_vTaskSuspend == 1 )    static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;#endif /* INCLUDE_vTaskSuspend *//* * Utility to ready all the lists used by the scheduler.  This is called * automatically upon the creation of the first task. */static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;/* * The idle task, which as all tasks is implemented as a never ending loop. * The idle task is automatically created and added to the ready lists upon * creation of the first user task. * * The portTASK_FUNCTION_PROTO() macro is used to allow port/compiler specific * language extensions.  The equivalent prototype for this function is: * * void prvIdleTask( void *pvParameters ); * */static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;/* * Utility to free all memory allocated by the scheduler to hold a TCB, * including the stack pointed to by the TCB. * * This does not free memory allocated by the task itself (i.e. memory * allocated by calls to pvPortMalloc from within the tasks application code). */#if ( INCLUDE_vTaskDelete == 1 )    static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;#endif/* * Used only by the idle task.  This checks to see if anything has been placed * in the list of tasks waiting to be deleted.  If so the task is cleaned up * and its TCB deleted. */static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;/* * The currently executing task is entering the Blocked state.  Add the task to * either the current or the overflow delayed task list. */static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,                                            const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;/* * Fills an TaskStatus_t structure with information on each task that is * referenced from the pxList list (which may be a ready list, a delayed list, * a suspended list, etc.). * * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM * NORMAL APPLICATION CODE. */#if ( configUSE_TRACE_FACILITY == 1 )    static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,                                                     List_t * pxList,                                                     eTaskState eState ) PRIVILEGED_FUNCTION;#endif/* * Searches pxList for a task with name pcNameToQuery - returning a handle to * the task if it is found, or NULL if the task is not found. */#if ( INCLUDE_xTaskGetHandle == 1 )    static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,                                                     const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;#endif/* * When a task is created, the stack of the task is filled with a known value. * This function determines the 'high water mark' of the task stack by * determining how much of the stack remains at the original preset value. */#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )    static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;#endif/* * Return the amount of time, in ticks, that will pass before the kernel will * next move a task from the Blocked state to the Running state. * * This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user * defined low power mode implementations require configUSE_TICKLESS_IDLE to be * set to a value other than 1. */#if ( configUSE_TICKLESS_IDLE != 0 )    static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;#endif/* * Set xNextTaskUnblockTime to the time at which the next Blocked state task * will exit the Blocked state. */static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )/* * Helper function used to pad task names with spaces when printing out * human readable tables of task information. */    static char * prvWriteNameToBuffer( char * pcBuffer,                                        const char * pcTaskName ) PRIVILEGED_FUNCTION;#endif/* * Called after a Task_t structure has been allocated either statically or * dynamically to fill in the structure's members. */static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,                                  const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */                                  const uint32_t ulStackDepth,                                  void * const pvParameters,                                  UBaseType_t uxPriority,                                  TaskHandle_t * const pxCreatedTask,                                  TCB_t * pxNewTCB,                                  const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;/* * Called after a new task has been created and initialised to place the task * under the control of the scheduler. */static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;/* * freertos_tasks_c_additions_init() should only be called if the user definable * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro * called by the function. */#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT    static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;#endif/*-----------------------------------------------------------*/#if ( configSUPPORT_STATIC_ALLOCATION == 1 )    TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,                                    const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */                                    const uint32_t ulStackDepth,                                    void * const pvParameters,                                    UBaseType_t uxPriority,                                    StackType_t * const puxStackBuffer,                                    StaticTask_t * const pxTaskBuffer )    {        TCB_t * pxNewTCB;        TaskHandle_t xReturn;        configASSERT( puxStackBuffer != NULL );        configASSERT( pxTaskBuffer != NULL );        #if ( configASSERT_DEFINED == 1 )            {                /* Sanity check that the size of the structure used to declare a                 * variable of type StaticTask_t equals the size of the real task                 * structure. */                volatile size_t xSize = sizeof( StaticTask_t );                configASSERT( xSize == sizeof( TCB_t ) );                ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */            }        #endif /* configASSERT_DEFINED */        if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )        {            /* The memory used for the task's TCB and stack are passed into this             * function - use them. */            pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */            pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */                {                    /* Tasks can be created statically or dynamically, so note this                     * task was created statically in case the task is later deleted. */                    pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;                }            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */            prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );            prvAddNewTaskToReadyList( pxNewTCB );        }        else        {            xReturn = NULL;        }        return xReturn;    }#endif /* SUPPORT_STATIC_ALLOCATION *//*-----------------------------------------------------------*/#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )    BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,                                            TaskHandle_t * pxCreatedTask )    {        TCB_t * pxNewTCB;        BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;        configASSERT( pxTaskDefinition->puxStackBuffer != NULL );        configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );        if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )        {            /* Allocate space for the TCB.  Where the memory comes from depends             * on the implementation of the port malloc function and whether or             * not static allocation is being used. */            pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;            /* Store the stack location in the TCB. */            pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )                {                    /* Tasks can be created statically or dynamically, so note this                     * task was created statically in case the task is later deleted. */                    pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;                }            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */            prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,                                  pxTaskDefinition->pcName,                                  ( uint32_t ) pxTaskDefinition->usStackDepth,                                  pxTaskDefinition->pvParameters,                                  pxTaskDefinition->uxPriority,                                  pxCreatedTask, pxNewTCB,                                  pxTaskDefinition->xRegions );            prvAddNewTaskToReadyList( pxNewTCB );            xReturn = pdPASS;        }        return xReturn;    }#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) *//*-----------------------------------------------------------*/#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )    BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,                                      TaskHandle_t * pxCreatedTask )    {        TCB_t * pxNewTCB;        BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;        configASSERT( pxTaskDefinition->puxStackBuffer );        if( pxTaskDefinition->puxStackBuffer != NULL )        {            /* Allocate space for the TCB.  Where the memory comes from depends             * on the implementation of the port malloc function and whether or             * not static allocation is being used. */            pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );            if( pxNewTCB != NULL )            {                /* Store the stack location in the TCB. */                pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;                #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )                    {                        /* Tasks can be created statically or dynamically, so note                         * this task had a statically allocated stack in case it is                         * later deleted.  The TCB was allocated dynamically. */                        pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;                    }                #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */                prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,                                      pxTaskDefinition->pcName,                                      ( uint32_t ) pxTaskDefinition->usStackDepth,                                      pxTaskDefinition->pvParameters,                                      pxTaskDefinition->uxPriority,                                      pxCreatedTask, pxNewTCB,                                      pxTaskDefinition->xRegions );                prvAddNewTaskToReadyList( pxNewTCB );                xReturn = pdPASS;            }        }        return xReturn;    }#endif /* portUSING_MPU_WRAPPERS *//*-----------------------------------------------------------*/#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )    BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,                            const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */                            const configSTACK_DEPTH_TYPE usStackDepth,                            void * const pvParameters,                            UBaseType_t uxPriority,                            TaskHandle_t * const pxCreatedTask )    {        TCB_t * pxNewTCB;        BaseType_t xReturn;        /* If the stack grows down then allocate the stack then the TCB so the stack         * does not grow into the TCB.  Likewise if the stack grows up then allocate         * the TCB then the stack. */        #if ( portSTACK_GROWTH > 0 )            {                /* Allocate space for the TCB.  Where the memory comes from depends on                 * the implementation of the port malloc function and whether or not static                 * allocation is being used. */                pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );                if( pxNewTCB != NULL )                {                    /* Allocate space for the stack used by the task being created.                     * The base of the stack memory stored in the TCB so the task can                     * be deleted later if required. */                    pxNewTCB->pxStack = ( StackType_t * ) pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */                    if( pxNewTCB->pxStack == NULL )                    {                        /* Could not allocate the stack.  Delete the allocated TCB. */                        vPortFree( pxNewTCB );                        pxNewTCB = NULL;                    }                }            }        #else /* portSTACK_GROWTH */            {                StackType_t * pxStack;                /* Allocate space for the stack used by the task being created. */                pxStack = pvPortMalloc( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */                if( pxStack != NULL )                {                    /* Allocate space for the TCB. */                    pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */                    if( pxNewTCB != NULL )                    {                        /* Store the stack location in the TCB. */                        pxNewTCB->pxStack = pxStack;                    }                    else                    {                        /* The stack cannot be used as the TCB was not created.  Free                         * it again. */                        vPortFree( pxStack );                    }                }                else                {                    pxNewTCB = NULL;                }            }        #endif /* portSTACK_GROWTH */        if( pxNewTCB != NULL )        {            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */                {                    /* Tasks can be created statically or dynamically, so note this                     * task was created dynamically in case it is later deleted. */                    pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;                }            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */            prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );            prvAddNewTaskToReadyList( pxNewTCB );            xReturn = pdPASS;        }        else        {            xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;        }        return xReturn;    }#endif /* configSUPPORT_DYNAMIC_ALLOCATION *//*-----------------------------------------------------------*/static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,                                  const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */                                  const uint32_t ulStackDepth,                                  void * const pvParameters,                                  UBaseType_t uxPriority,                                  TaskHandle_t * const pxCreatedTask,                                  TCB_t * pxNewTCB,                                  const MemoryRegion_t * const xRegions ){    StackType_t * pxTopOfStack;    UBaseType_t x;    #if ( portUSING_MPU_WRAPPERS == 1 )        /* Should the task be created in privileged mode? */        BaseType_t xRunPrivileged;        if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )        {            xRunPrivileged = pdTRUE;        }        else        {            xRunPrivileged = pdFALSE;        }        uxPriority &= ~portPRIVILEGE_BIT;    #endif /* portUSING_MPU_WRAPPERS == 1 */    /* Avoid dependency on memset() if it is not required. */    #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )        {            /* Fill the stack with a known value to assist debugging. */            ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );        }    #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */    /* Calculate the top of stack address.  This depends on whether the stack     * grows from high memory to low (as per the 80x86) or vice versa.     * portSTACK_GROWTH is used to make the result positive or negative as required     * by the port. */    #if ( portSTACK_GROWTH < 0 )        {            pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );            pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception.  Avoiding casts between pointers and integers is not practical.  Size differences accounted for using portPOINTER_SIZE_TYPE type.  Checked by assert(). */            /* Check the alignment of the calculated top of stack is correct. */            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );            #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )                {                    /* Also record the stack's high address, which may assist                     * debugging. */                    pxNewTCB->pxEndOfStack = pxTopOfStack;                }            #endif /* configRECORD_STACK_HIGH_ADDRESS */        }    #else /* portSTACK_GROWTH */        {            pxTopOfStack = pxNewTCB->pxStack;            /* Check the alignment of the stack buffer is correct. */            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );            /* The other extreme of the stack space is required if stack checking is             * performed. */            pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );        }    #endif /* portSTACK_GROWTH */    /* Store the task name in the TCB. */    if( pcName != NULL )    {        for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )        {            pxNewTCB->pcTaskName[ x ] = pcName[ x ];            /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than             * configMAX_TASK_NAME_LEN characters just in case the memory after the             * string is not accessible (extremely unlikely). */            if( pcName[ x ] == ( char ) 0x00 )            {                break;            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        /* Ensure the name string is terminated in the case that the string length         * was greater or equal to configMAX_TASK_NAME_LEN. */        pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';    }    else    {        /* The task has not been given a name, so just ensure there is a NULL         * terminator when it is read out. */        pxNewTCB->pcTaskName[ 0 ] = 0x00;    }    /* This is used as an array index so must ensure it's not too large.  First     * remove the privilege bit if one is present. */    if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )    {        uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;    }    else    {        mtCOVERAGE_TEST_MARKER();    }    pxNewTCB->uxPriority = uxPriority;    #if ( configUSE_MUTEXES == 1 )        {            pxNewTCB->uxBasePriority = uxPriority;            pxNewTCB->uxMutexesHeld = 0;        }    #endif /* configUSE_MUTEXES */    vListInitialiseItem( &( pxNewTCB->xStateListItem ) );    vListInitialiseItem( &( pxNewTCB->xEventListItem ) );    /* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get     * back to  the containing TCB from a generic item in a list. */    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );    /* Event lists are always in priority order. */    listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );    #if ( portCRITICAL_NESTING_IN_TCB == 1 )        {            pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;        }    #endif /* portCRITICAL_NESTING_IN_TCB */    #if ( configUSE_APPLICATION_TASK_TAG == 1 )        {            pxNewTCB->pxTaskTag = NULL;        }    #endif /* configUSE_APPLICATION_TASK_TAG */    #if ( configGENERATE_RUN_TIME_STATS == 1 )        {            pxNewTCB->ulRunTimeCounter = 0UL;        }    #endif /* configGENERATE_RUN_TIME_STATS */    #if ( portUSING_MPU_WRAPPERS == 1 )        {            vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );        }    #else        {            /* Avoid compiler warning about unreferenced parameter. */            ( void ) xRegions;        }    #endif    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )        {            memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );        }    #endif    #if ( configUSE_TASK_NOTIFICATIONS == 1 )        {            memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );            memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );        }    #endif    #if ( configUSE_NEWLIB_REENTRANT == 1 )        {            /* Initialise this task's Newlib reent structure.             * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html             * for additional information. */            _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );        }    #endif    #if ( INCLUDE_xTaskAbortDelay == 1 )        {            pxNewTCB->ucDelayAborted = pdFALSE;        }    #endif    /* Initialize the TCB stack to look as if the task was already running,     * but had been interrupted by the scheduler.  The return address is set     * to the start of the task function. Once the stack has been initialised     * the top of stack variable is updated. */    #if ( portUSING_MPU_WRAPPERS == 1 )        {            /* If the port has capability to detect stack overflow,             * pass the stack end address to the stack initialization             * function as well. */            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )                {                    #if ( portSTACK_GROWTH < 0 )                        {                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );                        }                    #else /* portSTACK_GROWTH */                        {                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );                        }                    #endif /* portSTACK_GROWTH */                }            #else /* portHAS_STACK_OVERFLOW_CHECKING */                {                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );                }            #endif /* portHAS_STACK_OVERFLOW_CHECKING */        }    #else /* portUSING_MPU_WRAPPERS */        {            /* If the port has capability to detect stack overflow,             * pass the stack end address to the stack initialization             * function as well. */            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )                {                    #if ( portSTACK_GROWTH < 0 )                        {                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );                        }                    #else /* portSTACK_GROWTH */                        {                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );                        }                    #endif /* portSTACK_GROWTH */                }            #else /* portHAS_STACK_OVERFLOW_CHECKING */                {                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );                }            #endif /* portHAS_STACK_OVERFLOW_CHECKING */        }    #endif /* portUSING_MPU_WRAPPERS */    if( pxCreatedTask != NULL )    {        /* Pass the handle out in an anonymous way.  The handle can be used to         * change the created task's priority, delete the created task, etc.*/        *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;    }    else    {        mtCOVERAGE_TEST_MARKER();    }}/*-----------------------------------------------------------*/static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ){    /* Ensure interrupts don't access the task lists while the lists are being     * updated. */    taskENTER_CRITICAL();    {        uxCurrentNumberOfTasks++;        if( pxCurrentTCB == NULL )        {            /* There are no other tasks, or all the other tasks are in             * the suspended state - make this the current task. */            pxCurrentTCB = pxNewTCB;            if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )            {                /* This is the first task to be created so do the preliminary                 * initialisation required.  We will not recover if this call                 * fails, but we will report the failure. */                prvInitialiseTaskLists();            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        else        {            /* If the scheduler is not already running, make this task the             * current task if it is the highest priority task to be created             * so far. */            if( xSchedulerRunning == pdFALSE )            {                if( pxCurrentTCB->uxPriority <= pxNewTCB->uxPriority )                {                    pxCurrentTCB = pxNewTCB;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        uxTaskNumber++;        #if ( configUSE_TRACE_FACILITY == 1 )            {                /* Add a counter into the TCB for tracing only. */                pxNewTCB->uxTCBNumber = uxTaskNumber;            }        #endif /* configUSE_TRACE_FACILITY */        traceTASK_CREATE( pxNewTCB );        prvAddTaskToReadyList( pxNewTCB );        portSETUP_TCB( pxNewTCB );    }    taskEXIT_CRITICAL();    if( xSchedulerRunning != pdFALSE )    {        /* If the created task is of a higher priority than the current task         * then it should run now. */        if( pxCurrentTCB->uxPriority < pxNewTCB->uxPriority )        {            taskYIELD_IF_USING_PREEMPTION();        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }    else    {        mtCOVERAGE_TEST_MARKER();    }}/*-----------------------------------------------------------*/#if ( INCLUDE_vTaskDelete == 1 )    void vTaskDelete( TaskHandle_t xTaskToDelete )    {        TCB_t * pxTCB;        taskENTER_CRITICAL();        {            /* If null is passed in here then it is the calling task that is             * being deleted. */            pxTCB = prvGetTCBFromHandle( xTaskToDelete );            /* Remove task from the ready/delayed list. */            if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )            {                taskRESET_READY_PRIORITY( pxTCB->uxPriority );            }            else            {                mtCOVERAGE_TEST_MARKER();            }            /* Is the task waiting on an event also? */            if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )            {                ( void ) uxListRemove( &( pxTCB->xEventListItem ) );            }            else            {                mtCOVERAGE_TEST_MARKER();            }            /* Increment the uxTaskNumber also so kernel aware debuggers can             * detect that the task lists need re-generating.  This is done before             * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will             * not return. */            uxTaskNumber++;            if( pxTCB == pxCurrentTCB )            {                /* A task is deleting itself.  This cannot complete within the                 * task itself, as a context switch to another task is required.                 * Place the task in the termination list.  The idle task will                 * check the termination list and free up any memory allocated by                 * the scheduler for the TCB and stack of the deleted task. */                vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );                /* Increment the ucTasksDeleted variable so the idle task knows                 * there is a task that has been deleted and that it should therefore                 * check the xTasksWaitingTermination list. */                ++uxDeletedTasksWaitingCleanUp;                /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as                 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */                traceTASK_DELETE( pxTCB );                /* The pre-delete hook is primarily for the Windows simulator,                 * in which Windows specific clean up operations are performed,                 * after which it is not possible to yield away from this task -                 * hence xYieldPending is used to latch that a context switch is                 * required. */                portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPending );            }            else            {                --uxCurrentNumberOfTasks;                traceTASK_DELETE( pxTCB );                prvDeleteTCB( pxTCB );                /* Reset the next expected unblock time in case it referred to                 * the task that has just been deleted. */                prvResetNextTaskUnblockTime();            }        }        taskEXIT_CRITICAL();        /* Force a reschedule if it is the currently running task that has just         * been deleted. */        if( xSchedulerRunning != pdFALSE )        {            if( pxTCB == pxCurrentTCB )            {                configASSERT( uxSchedulerSuspended == 0 );                portYIELD_WITHIN_API();            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }    }#endif /* INCLUDE_vTaskDelete *//*-----------------------------------------------------------*/#if ( INCLUDE_xTaskDelayUntil == 1 )    BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,                                const TickType_t xTimeIncrement )    {        TickType_t xTimeToWake;        BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;        configASSERT( pxPreviousWakeTime );        configASSERT( ( xTimeIncrement > 0U ) );        configASSERT( uxSchedulerSuspended == 0 );        vTaskSuspendAll();        {            /* Minor optimisation.  The tick count cannot change in this             * block. */            const TickType_t xConstTickCount = xTickCount;            /* Generate the tick time at which the task wants to wake. */            xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;            if( xConstTickCount < *pxPreviousWakeTime )            {                /* The tick count has overflowed since this function was                 * lasted called.  In this case the only time we should ever                 * actually delay is if the wake time has also  overflowed,                 * and the wake time is greater than the tick time.  When this                 * is the case it is as if neither time had overflowed. */                if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )                {                    xShouldDelay = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                /* The tick time has not overflowed.  In this case we will                 * delay if either the wake time has overflowed, and/or the                 * tick time is less than the wake time. */                if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )                {                    xShouldDelay = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            /* Update the wake time ready for the next call. */            *pxPreviousWakeTime = xTimeToWake;            if( xShouldDelay != pdFALSE )            {                traceTASK_DELAY_UNTIL( xTimeToWake );                /* prvAddCurrentTaskToDelayedList() needs the block time, not                 * the time to wake, so subtract the current tick count. */                prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        xAlreadyYielded = xTaskResumeAll();        /* Force a reschedule if xTaskResumeAll has not already done so, we may         * have put ourselves to sleep. */        if( xAlreadyYielded == pdFALSE )        {            portYIELD_WITHIN_API();        }        else        {            mtCOVERAGE_TEST_MARKER();        }        return xShouldDelay;    }#endif /* INCLUDE_xTaskDelayUntil *//*-----------------------------------------------------------*/#if ( INCLUDE_vTaskDelay == 1 )    void vTaskDelay( const TickType_t xTicksToDelay )    {        BaseType_t xAlreadyYielded = pdFALSE;        /* A delay time of zero just forces a reschedule. */        if( xTicksToDelay > ( TickType_t ) 0U )        {            configASSERT( uxSchedulerSuspended == 0 );            vTaskSuspendAll();            {                traceTASK_DELAY();                /* A task that is removed from the event list while the                 * scheduler is suspended will not get placed in the ready                 * list or removed from the blocked list until the scheduler                 * is resumed.                 *                 * This task cannot be in an event list as it is the currently                 * executing task. */                prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );            }            xAlreadyYielded = xTaskResumeAll();        }        else        {            mtCOVERAGE_TEST_MARKER();        }        /* Force a reschedule if xTaskResumeAll has not already done so, we may         * have put ourselves to sleep. */        if( xAlreadyYielded == pdFALSE )        {            portYIELD_WITHIN_API();        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* INCLUDE_vTaskDelay *//*-----------------------------------------------------------*/#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )    eTaskState eTaskGetState( TaskHandle_t xTask )    {        eTaskState eReturn;        List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;        const TCB_t * const pxTCB = xTask;        configASSERT( pxTCB );        if( pxTCB == pxCurrentTCB )        {            /* The task calling this function is querying its own state. */            eReturn = eRunning;        }        else        {            taskENTER_CRITICAL();            {                pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );                pxDelayedList = pxDelayedTaskList;                pxOverflowedDelayedList = pxOverflowDelayedTaskList;            }            taskEXIT_CRITICAL();            if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )            {                /* The task being queried is referenced from one of the Blocked                 * lists. */                eReturn = eBlocked;            }            #if ( INCLUDE_vTaskSuspend == 1 )                else if( pxStateList == &xSuspendedTaskList )                {                    /* The task being queried is referenced from the suspended                     * list.  Is it genuinely suspended or is it blocked                     * indefinitely? */                    if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )                    {                        #if ( configUSE_TASK_NOTIFICATIONS == 1 )                            {                                BaseType_t x;                                /* The task does not appear on the event list item of                                 * and of the RTOS objects, but could still be in the                                 * blocked state if it is waiting on its notification                                 * rather than waiting on an object.  If not, is                                 * suspended. */                                eReturn = eSuspended;                                for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )                                {                                    if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )                                    {                                        eReturn = eBlocked;                                        break;                                    }                                }                            }                        #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */                            {                                eReturn = eSuspended;                            }                        #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */                    }                    else                    {                        eReturn = eBlocked;                    }                }            #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */            #if ( INCLUDE_vTaskDelete == 1 )                else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )                {                    /* The task being queried is referenced from the deleted                     * tasks list, or it is not referenced from any lists at                     * all. */                    eReturn = eDeleted;                }            #endif            else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */            {                /* If the task is not in any other state, it must be in the                 * Ready (including pending ready) state. */                eReturn = eReady;            }        }        return eReturn;    } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */#endif /* INCLUDE_eTaskGetState *//*-----------------------------------------------------------*/#if ( INCLUDE_uxTaskPriorityGet == 1 )    UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )    {        TCB_t const * pxTCB;        UBaseType_t uxReturn;        taskENTER_CRITICAL();        {            /* If null is passed in here then it is the priority of the task             * that called uxTaskPriorityGet() that is being queried. */            pxTCB = prvGetTCBFromHandle( xTask );            uxReturn = pxTCB->uxPriority;        }        taskEXIT_CRITICAL();        return uxReturn;    }#endif /* INCLUDE_uxTaskPriorityGet *//*-----------------------------------------------------------*/#if ( INCLUDE_uxTaskPriorityGet == 1 )    UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )    {        TCB_t const * pxTCB;        UBaseType_t uxReturn, uxSavedInterruptState;        /* RTOS ports that support interrupt nesting have the concept of a         * maximum  system call (or maximum API call) interrupt priority.         * Interrupts that are  above the maximum system call priority are keep         * permanently enabled, even when the RTOS kernel is in a critical section,         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()         * is defined in FreeRTOSConfig.h then         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion         * failure if a FreeRTOS API function is called from an interrupt that has         * been assigned a priority above the configured maximum system call         * priority.  Only FreeRTOS functions that end in FromISR can be called         * from interrupts  that have been assigned a priority at or (logically)         * below the maximum system call interrupt priority.  FreeRTOS maintains a         * separate interrupt safe API to ensure interrupt entry is as fast and as         * simple as possible.  More information (albeit Cortex-M specific) is         * provided on the following link:         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();        uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();        {            /* If null is passed in here then it is the priority of the calling             * task that is being queried. */            pxTCB = prvGetTCBFromHandle( xTask );            uxReturn = pxTCB->uxPriority;        }        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );        return uxReturn;    }#endif /* INCLUDE_uxTaskPriorityGet *//*-----------------------------------------------------------*/#if ( INCLUDE_vTaskPrioritySet == 1 )    void vTaskPrioritySet( TaskHandle_t xTask,                           UBaseType_t uxNewPriority )    {        TCB_t * pxTCB;        UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;        BaseType_t xYieldRequired = pdFALSE;        configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );        /* Ensure the new priority is valid. */        if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )        {            uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;        }        else        {            mtCOVERAGE_TEST_MARKER();        }        taskENTER_CRITICAL();        {            /* If null is passed in here then it is the priority of the calling             * task that is being changed. */            pxTCB = prvGetTCBFromHandle( xTask );            traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );            #if ( configUSE_MUTEXES == 1 )                {                    uxCurrentBasePriority = pxTCB->uxBasePriority;                }            #else                {                    uxCurrentBasePriority = pxTCB->uxPriority;                }            #endif            if( uxCurrentBasePriority != uxNewPriority )            {                /* The priority change may have readied a task of higher                 * priority than the calling task. */                if( uxNewPriority > uxCurrentBasePriority )                {                    if( pxTCB != pxCurrentTCB )                    {                        /* The priority of a task other than the currently                         * running task is being raised.  Is the priority being                         * raised above that of the running task? */                        if( uxNewPriority >= pxCurrentTCB->uxPriority )                        {                            xYieldRequired = pdTRUE;                        }                        else                        {                            mtCOVERAGE_TEST_MARKER();                        }                    }                    else                    {                        /* The priority of the running task is being raised,                         * but the running task must already be the highest                         * priority task able to run so no yield is required. */                    }                }                else if( pxTCB == pxCurrentTCB )                {                    /* Setting the priority of the running task down means                     * there may now be another task of higher priority that                     * is ready to execute. */                    xYieldRequired = pdTRUE;                }                else                {                    /* Setting the priority of any other task down does not                     * require a yield as the running task must be above the                     * new priority of the task being modified. */                }                /* Remember the ready list the task might be referenced from                 * before its uxPriority member is changed so the                 * taskRESET_READY_PRIORITY() macro can function correctly. */                uxPriorityUsedOnEntry = pxTCB->uxPriority;                #if ( configUSE_MUTEXES == 1 )                    {                        /* Only change the priority being used if the task is not                         * currently using an inherited priority. */                        if( pxTCB->uxBasePriority == pxTCB->uxPriority )                        {                            pxTCB->uxPriority = uxNewPriority;                        }                        else                        {                            mtCOVERAGE_TEST_MARKER();                        }                        /* The base priority gets set whatever. */                        pxTCB->uxBasePriority = uxNewPriority;                    }                #else /* if ( configUSE_MUTEXES == 1 ) */                    {                        pxTCB->uxPriority = uxNewPriority;                    }                #endif /* if ( configUSE_MUTEXES == 1 ) */                /* Only reset the event list item value if the value is not                 * being used for anything else. */                if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )                {                    listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */                }                else                {                    mtCOVERAGE_TEST_MARKER();                }                /* If the task is in the blocked or suspended list we need do                 * nothing more than change its priority variable. However, if                 * the task is in a ready list it needs to be removed and placed                 * in the list appropriate to its new priority. */                if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )                {                    /* The task is currently in its ready list - remove before                     * adding it to it's new ready list.  As we are in a critical                     * section we can do this even if the scheduler is suspended. */                    if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )                    {                        /* It is known that the task is in its ready list so                         * there is no need to check again and the port level                         * reset macro can be called directly. */                        portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    prvAddTaskToReadyList( pxTCB );                }                else                {                    mtCOVERAGE_TEST_MARKER();                }                if( xYieldRequired != pdFALSE )                {                    taskYIELD_IF_USING_PREEMPTION();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }                /* Remove compiler warning about unused variables when the port                 * optimised task selection is not being used. */                ( void ) uxPriorityUsedOnEntry;            }        }        taskEXIT_CRITICAL();    }#endif /* INCLUDE_vTaskPrioritySet *//*-----------------------------------------------------------*/#if ( INCLUDE_vTaskSuspend == 1 )    void vTaskSuspend( TaskHandle_t xTaskToSuspend )    {        TCB_t * pxTCB;        taskENTER_CRITICAL();        {            /* If null is passed in here then it is the running task that is             * being suspended. */            pxTCB = prvGetTCBFromHandle( xTaskToSuspend );            traceTASK_SUSPEND( pxTCB );            /* Remove task from the ready/delayed list and place in the             * suspended list. */            if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )            {                taskRESET_READY_PRIORITY( pxTCB->uxPriority );            }            else            {                mtCOVERAGE_TEST_MARKER();            }            /* Is the task waiting on an event also? */            if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )            {                ( void ) uxListRemove( &( pxTCB->xEventListItem ) );            }            else            {                mtCOVERAGE_TEST_MARKER();            }            vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );            #if ( configUSE_TASK_NOTIFICATIONS == 1 )                {                    BaseType_t x;                    for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )                    {                        if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )                        {                            /* The task was blocked to wait for a notification, but is                             * now suspended, so no notification was received. */                            pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;                        }                    }                }            #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */        }        taskEXIT_CRITICAL();        if( xSchedulerRunning != pdFALSE )        {            /* Reset the next expected unblock time in case it referred to the             * task that is now in the Suspended state. */            taskENTER_CRITICAL();            {                prvResetNextTaskUnblockTime();            }            taskEXIT_CRITICAL();        }        else        {            mtCOVERAGE_TEST_MARKER();        }        if( pxTCB == pxCurrentTCB )        {            if( xSchedulerRunning != pdFALSE )            {                /* The current task has just been suspended. */                configASSERT( uxSchedulerSuspended == 0 );                portYIELD_WITHIN_API();            }            else            {                /* The scheduler is not running, but the task that was pointed                 * to by pxCurrentTCB has just been suspended and pxCurrentTCB                 * must be adjusted to point to a different task. */                if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */                {                    /* No other tasks are ready, so set pxCurrentTCB back to                     * NULL so when the next task is created pxCurrentTCB will                     * be set to point to it no matter what its relative priority                     * is. */                    pxCurrentTCB = NULL;                }                else                {                    vTaskSwitchContext();                }            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* INCLUDE_vTaskSuspend *//*-----------------------------------------------------------*/#if ( INCLUDE_vTaskSuspend == 1 )    static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )    {        BaseType_t xReturn = pdFALSE;        const TCB_t * const pxTCB = xTask;        /* Accesses xPendingReadyList so must be called from a critical         * section. */        /* It does not make sense to check if the calling task is suspended. */        configASSERT( xTask );        /* Is the task being resumed actually in the suspended list? */        if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )        {            /* Has the task already been resumed from within an ISR? */            if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )            {                /* Is it in the suspended list because it is in the Suspended                 * state, or because is is blocked with no timeout? */                if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961.  The cast is only redundant when NULL is used. */                {                    xReturn = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }        return xReturn;    } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */#endif /* INCLUDE_vTaskSuspend *//*-----------------------------------------------------------*/#if ( INCLUDE_vTaskSuspend == 1 )    void vTaskResume( TaskHandle_t xTaskToResume )    {        TCB_t * const pxTCB = xTaskToResume;        /* It does not make sense to resume the calling task. */        configASSERT( xTaskToResume );        /* The parameter cannot be NULL as it is impossible to resume the         * currently executing task. */        if( ( pxTCB != pxCurrentTCB ) && ( pxTCB != NULL ) )        {            taskENTER_CRITICAL();            {                if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )                {                    traceTASK_RESUME( pxTCB );                    /* The ready list can be accessed even if the scheduler is                     * suspended because this is inside a critical section. */                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                    prvAddTaskToReadyList( pxTCB );                    /* A higher priority task may have just been resumed. */                    if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )                    {                        /* This yield may not cause the task just resumed to run,                         * but will leave the lists in the correct state for the                         * next yield. */                        taskYIELD_IF_USING_PREEMPTION();                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            taskEXIT_CRITICAL();        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* INCLUDE_vTaskSuspend *//*-----------------------------------------------------------*/#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )    BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )    {        BaseType_t xYieldRequired = pdFALSE;        TCB_t * const pxTCB = xTaskToResume;        UBaseType_t uxSavedInterruptStatus;        configASSERT( xTaskToResume );        /* RTOS ports that support interrupt nesting have the concept of a         * maximum  system call (or maximum API call) interrupt priority.         * Interrupts that are  above the maximum system call priority are keep         * permanently enabled, even when the RTOS kernel is in a critical section,         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()         * is defined in FreeRTOSConfig.h then         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion         * failure if a FreeRTOS API function is called from an interrupt that has         * been assigned a priority above the configured maximum system call         * priority.  Only FreeRTOS functions that end in FromISR can be called         * from interrupts  that have been assigned a priority at or (logically)         * below the maximum system call interrupt priority.  FreeRTOS maintains a         * separate interrupt safe API to ensure interrupt entry is as fast and as         * simple as possible.  More information (albeit Cortex-M specific) is         * provided on the following link:         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();        {            if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )            {                traceTASK_RESUME_FROM_ISR( pxTCB );                /* Check the ready lists can be accessed. */                if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )                {                    /* Ready lists can be accessed so move the task from the                     * suspended list to the ready list directly. */                    if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )                    {                        xYieldRequired = pdTRUE;                        /* Mark that a yield is pending in case the user is not                         * using the return value to initiate a context switch                         * from the ISR using portYIELD_FROM_ISR. */                        xYieldPending = pdTRUE;                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                    prvAddTaskToReadyList( pxTCB );                }                else                {                    /* The delayed or ready lists cannot be accessed so the task                     * is held in the pending ready list until the scheduler is                     * unsuspended. */                    vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );        return xYieldRequired;    }#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) *//*-----------------------------------------------------------*/void vTaskStartScheduler( void ){    BaseType_t xReturn;    /* Add the idle task at the lowest priority. */    #if ( configSUPPORT_STATIC_ALLOCATION == 1 )        {            StaticTask_t * pxIdleTaskTCBBuffer = NULL;            StackType_t * pxIdleTaskStackBuffer = NULL;            uint32_t ulIdleTaskStackSize;            /* The Idle task is created using user provided RAM - obtain the             * address of the RAM then create the idle task. */            vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );            xIdleTaskHandle = xTaskCreateStatic( prvIdleTask,                                                 configIDLE_TASK_NAME,                                                 ulIdleTaskStackSize,                                                 ( void * ) NULL,       /*lint !e961.  The cast is not redundant for all compilers. */                                                 portPRIVILEGE_BIT,     /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */                                                 pxIdleTaskStackBuffer,                                                 pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */            if( xIdleTaskHandle != NULL )            {                xReturn = pdPASS;            }            else            {                xReturn = pdFAIL;            }        }    #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */        {            /* The Idle task is being created using dynamically allocated RAM. */            xReturn = xTaskCreate( prvIdleTask,                                   configIDLE_TASK_NAME,                                   configMINIMAL_STACK_SIZE,                                   ( void * ) NULL,                                   portPRIVILEGE_BIT,  /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */                                   &xIdleTaskHandle ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */        }    #endif /* configSUPPORT_STATIC_ALLOCATION */    #if ( configUSE_TIMERS == 1 )        {            if( xReturn == pdPASS )            {                xReturn = xTimerCreateTimerTask();            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }    #endif /* configUSE_TIMERS */    if( xReturn == pdPASS )    {        /* freertos_tasks_c_additions_init() should only be called if the user         * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is         * the only macro called by the function. */        #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT            {                freertos_tasks_c_additions_init();            }        #endif        /* Interrupts are turned off here, to ensure a tick does not occur         * before or during the call to xPortStartScheduler().  The stacks of         * the created tasks contain a status word with interrupts switched on         * so interrupts will automatically get re-enabled when the first task         * starts to run. */        portDISABLE_INTERRUPTS();        #if ( configUSE_NEWLIB_REENTRANT == 1 )            {                /* Switch Newlib's _impure_ptr variable to point to the _reent                 * structure specific to the task that will run first.                 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html                 * for additional information. */                _impure_ptr = &( pxCurrentTCB->xNewLib_reent );            }        #endif /* configUSE_NEWLIB_REENTRANT */        xNextTaskUnblockTime = portMAX_DELAY;        xSchedulerRunning = pdTRUE;        xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;        /* If configGENERATE_RUN_TIME_STATS is defined then the following         * macro must be defined to configure the timer/counter used to generate         * the run time counter time base.   NOTE:  If configGENERATE_RUN_TIME_STATS         * is set to 0 and the following line fails to build then ensure you do not         * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your         * FreeRTOSConfig.h file. */        portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();        traceTASK_SWITCHED_IN();        /* Setting up the timer tick is hardware specific and thus in the         * portable interface. */        if( xPortStartScheduler() != pdFALSE )        {            /* Should not reach here as if the scheduler is running the             * function will not return. */        }        else        {            /* Should only reach here if a task calls xTaskEndScheduler(). */        }    }    else    {        /* This line will only be reached if the kernel could not be started,         * because there was not enough FreeRTOS heap to create the idle task         * or the timer task. */        configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );    }    /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,     * meaning xIdleTaskHandle is not used anywhere else. */    ( void ) xIdleTaskHandle;    /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority     * from getting optimized out as it is no longer used by the kernel. */    ( void ) uxTopUsedPriority;}/*-----------------------------------------------------------*/void vTaskEndScheduler( void ){    /* Stop the scheduler interrupts and call the portable scheduler end     * routine so the original ISRs can be restored if necessary.  The port     * layer must ensure interrupts enable  bit is left in the correct state. */    portDISABLE_INTERRUPTS();    xSchedulerRunning = pdFALSE;    vPortEndScheduler();}/*----------------------------------------------------------*/void vTaskSuspendAll( void ){    /* A critical section is not required as the variable is of type     * BaseType_t.  Please read Richard Barry's reply in the following link to a     * post in the FreeRTOS support forum before reporting this as a bug! -     * https://goo.gl/wu4acr */    /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that     * do not otherwise exhibit real time behaviour. */    portSOFTWARE_BARRIER();    /* The scheduler is suspended if uxSchedulerSuspended is non-zero.  An increment     * is used to allow calls to vTaskSuspendAll() to nest. */    ++uxSchedulerSuspended;    /* Enforces ordering for ports and optimised compilers that may otherwise place     * the above increment elsewhere. */    portMEMORY_BARRIER();}/*----------------------------------------------------------*/#if ( configUSE_TICKLESS_IDLE != 0 )    static TickType_t prvGetExpectedIdleTime( void )    {        TickType_t xReturn;        UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;        /* uxHigherPriorityReadyTasks takes care of the case where         * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority         * task that are in the Ready state, even though the idle task is         * running. */        #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )            {                if( uxTopReadyPriority > tskIDLE_PRIORITY )                {                    uxHigherPriorityReadyTasks = pdTRUE;                }            }        #else            {                const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;                /* When port optimised task selection is used the uxTopReadyPriority                 * variable is used as a bit map.  If bits other than the least                 * significant bit are set then there are tasks that have a priority                 * above the idle priority that are in the Ready state.  This takes                 * care of the case where the co-operative scheduler is in use. */                if( uxTopReadyPriority > uxLeastSignificantBit )                {                    uxHigherPriorityReadyTasks = pdTRUE;                }            }        #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */        if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )        {            xReturn = 0;        }        else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )        {            /* There are other idle priority tasks in the ready state.  If             * time slicing is used then the very next tick interrupt must be             * processed. */            xReturn = 0;        }        else if( uxHigherPriorityReadyTasks != pdFALSE )        {            /* There are tasks in the Ready state that have a priority above the             * idle priority.  This path can only be reached if             * configUSE_PREEMPTION is 0. */            xReturn = 0;        }        else        {            xReturn = xNextTaskUnblockTime - xTickCount;        }        return xReturn;    }#endif /* configUSE_TICKLESS_IDLE *//*----------------------------------------------------------*/BaseType_t xTaskResumeAll( void ){    TCB_t * pxTCB = NULL;    BaseType_t xAlreadyYielded = pdFALSE;    /* If uxSchedulerSuspended is zero then this function does not match a     * previous call to vTaskSuspendAll(). */    configASSERT( uxSchedulerSuspended );    /* It is possible that an ISR caused a task to be removed from an event     * list while the scheduler was suspended.  If this was the case then the     * removed task will have been added to the xPendingReadyList.  Once the     * scheduler has been resumed it is safe to move all the pending ready     * tasks from this list into their appropriate ready list. */    taskENTER_CRITICAL();    {        --uxSchedulerSuspended;        if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )        {            if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )            {                /* Move any readied tasks from the pending list into the                 * appropriate ready list. */                while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )                {                    pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */                    ( void ) uxListRemove( &( pxTCB->xEventListItem ) );                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                    prvAddTaskToReadyList( pxTCB );                    /* If the moved task has a priority higher than the current                     * task then a yield must be performed. */                    if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )                    {                        xYieldPending = pdTRUE;                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                }                if( pxTCB != NULL )                {                    /* A task was unblocked while the scheduler was suspended,                     * which may have prevented the next unblock time from being                     * re-calculated, in which case re-calculate it now.  Mainly                     * important for low power tickless implementations, where                     * this can prevent an unnecessary exit from low power                     * state. */                    prvResetNextTaskUnblockTime();                }                /* If any ticks occurred while the scheduler was suspended then                 * they should be processed now.  This ensures the tick count does                 * not  slip, and that any delayed tasks are resumed at the correct                 * time. */                {                    TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */                    if( xPendedCounts > ( TickType_t ) 0U )                    {                        do                        {                            if( xTaskIncrementTick() != pdFALSE )                            {                                xYieldPending = pdTRUE;                            }                            else                            {                                mtCOVERAGE_TEST_MARKER();                            }                            --xPendedCounts;                        } while( xPendedCounts > ( TickType_t ) 0U );                        xPendedTicks = 0;                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                }                if( xYieldPending != pdFALSE )                {                    #if ( configUSE_PREEMPTION != 0 )                        {                            xAlreadyYielded = pdTRUE;                        }                    #endif                    taskYIELD_IF_USING_PREEMPTION();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }    taskEXIT_CRITICAL();    return xAlreadyYielded;}/*-----------------------------------------------------------*/TickType_t xTaskGetTickCount( void ){    TickType_t xTicks;    /* Critical section required if running on a 16 bit processor. */    portTICK_TYPE_ENTER_CRITICAL();    {        xTicks = xTickCount;    }    portTICK_TYPE_EXIT_CRITICAL();    return xTicks;}/*-----------------------------------------------------------*/TickType_t xTaskGetTickCountFromISR( void ){    TickType_t xReturn;    UBaseType_t uxSavedInterruptStatus;    /* RTOS ports that support interrupt nesting have the concept of a maximum     * system call (or maximum API call) interrupt priority.  Interrupts that are     * above the maximum system call priority are kept permanently enabled, even     * when the RTOS kernel is in a critical section, but cannot make any calls to     * FreeRTOS API functions.  If configASSERT() is defined in FreeRTOSConfig.h     * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion     * failure if a FreeRTOS API function is called from an interrupt that has been     * assigned a priority above the configured maximum system call priority.     * Only FreeRTOS functions that end in FromISR can be called from interrupts     * that have been assigned a priority at or (logically) below the maximum     * system call  interrupt priority.  FreeRTOS maintains a separate interrupt     * safe API to ensure interrupt entry is as fast and as simple as possible.     * More information (albeit Cortex-M specific) is provided on the following     * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */    portASSERT_IF_INTERRUPT_PRIORITY_INVALID();    uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();    {        xReturn = xTickCount;    }    portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );    return xReturn;}/*-----------------------------------------------------------*/UBaseType_t uxTaskGetNumberOfTasks( void ){    /* A critical section is not required because the variables are of type     * BaseType_t. */    return uxCurrentNumberOfTasks;}/*-----------------------------------------------------------*/char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */{    TCB_t * pxTCB;    /* If null is passed in here then the name of the calling task is being     * queried. */    pxTCB = prvGetTCBFromHandle( xTaskToQuery );    configASSERT( pxTCB );    return &( pxTCB->pcTaskName[ 0 ] );}/*-----------------------------------------------------------*/#if ( INCLUDE_xTaskGetHandle == 1 )    static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,                                                     const char pcNameToQuery[] )    {        TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;        UBaseType_t x;        char cNextChar;        BaseType_t xBreakLoop;        /* This function is called with the scheduler suspended. */        if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )        {            listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */            do            {                listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */                /* Check each character in the name looking for a match or                 * mismatch. */                xBreakLoop = pdFALSE;                for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )                {                    cNextChar = pxNextTCB->pcTaskName[ x ];                    if( cNextChar != pcNameToQuery[ x ] )                    {                        /* Characters didn't match. */                        xBreakLoop = pdTRUE;                    }                    else if( cNextChar == ( char ) 0x00 )                    {                        /* Both strings terminated, a match must have been                         * found. */                        pxReturn = pxNextTCB;                        xBreakLoop = pdTRUE;                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    if( xBreakLoop != pdFALSE )                    {                        break;                    }                }                if( pxReturn != NULL )                {                    /* The handle has been found. */                    break;                }            } while( pxNextTCB != pxFirstTCB );        }        else        {            mtCOVERAGE_TEST_MARKER();        }        return pxReturn;    }#endif /* INCLUDE_xTaskGetHandle *//*-----------------------------------------------------------*/#if ( INCLUDE_xTaskGetHandle == 1 )    TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */    {        UBaseType_t uxQueue = configMAX_PRIORITIES;        TCB_t * pxTCB;        /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */        configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );        vTaskSuspendAll();        {            /* Search the ready lists. */            do            {                uxQueue--;                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );                if( pxTCB != NULL )                {                    /* Found the handle. */                    break;                }            } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */            /* Search the delayed lists. */            if( pxTCB == NULL )            {                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );            }            if( pxTCB == NULL )            {                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );            }            #if ( INCLUDE_vTaskSuspend == 1 )                {                    if( pxTCB == NULL )                    {                        /* Search the suspended list. */                        pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );                    }                }            #endif            #if ( INCLUDE_vTaskDelete == 1 )                {                    if( pxTCB == NULL )                    {                        /* Search the deleted list. */                        pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );                    }                }            #endif        }        ( void ) xTaskResumeAll();        return pxTCB;    }#endif /* INCLUDE_xTaskGetHandle *//*-----------------------------------------------------------*/#if ( configUSE_TRACE_FACILITY == 1 )    UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,                                      const UBaseType_t uxArraySize,                                      uint32_t * const pulTotalRunTime )    {        UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;        vTaskSuspendAll();        {            /* Is there a space in the array for each task in the system? */            if( uxArraySize >= uxCurrentNumberOfTasks )            {                /* Fill in an TaskStatus_t structure with information on each                 * task in the Ready state. */                do                {                    uxQueue--;                    uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );                } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */                /* Fill in an TaskStatus_t structure with information on each                 * task in the Blocked state. */                uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );                uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );                #if ( INCLUDE_vTaskDelete == 1 )                    {                        /* Fill in an TaskStatus_t structure with information on                         * each task that has been deleted but not yet cleaned up. */                        uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );                    }                #endif                #if ( INCLUDE_vTaskSuspend == 1 )                    {                        /* Fill in an TaskStatus_t structure with information on                         * each task in the Suspended state. */                        uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );                    }                #endif                #if ( configGENERATE_RUN_TIME_STATS == 1 )                    {                        if( pulTotalRunTime != NULL )                        {                            #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE                                portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );                            #else                                *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();                            #endif                        }                    }                #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */                    {                        if( pulTotalRunTime != NULL )                        {                            *pulTotalRunTime = 0;                        }                    }                #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        ( void ) xTaskResumeAll();        return uxTask;    }#endif /* configUSE_TRACE_FACILITY *//*----------------------------------------------------------*/#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )    TaskHandle_t xTaskGetIdleTaskHandle( void )    {        /* If xTaskGetIdleTaskHandle() is called before the scheduler has been         * started, then xIdleTaskHandle will be NULL. */        configASSERT( ( xIdleTaskHandle != NULL ) );        return xIdleTaskHandle;    }#endif /* INCLUDE_xTaskGetIdleTaskHandle *//*----------------------------------------------------------*//* This conditional compilation should use inequality to 0, not equality to 1. * This is to ensure vTaskStepTick() is available when user defined low power mode * implementations require configUSE_TICKLESS_IDLE to be set to a value other than * 1. */#if ( configUSE_TICKLESS_IDLE != 0 )    void vTaskStepTick( const TickType_t xTicksToJump )    {        /* Correct the tick count value after a period during which the tick         * was suppressed.  Note this does *not* call the tick hook function for         * each stepped tick. */        configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );        xTickCount += xTicksToJump;        traceINCREASE_TICK_COUNT( xTicksToJump );    }#endif /* configUSE_TICKLESS_IDLE *//*----------------------------------------------------------*/BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp ){    BaseType_t xYieldOccurred;    /* Must not be called with the scheduler suspended as the implementation     * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */    configASSERT( uxSchedulerSuspended == 0 );    /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when     * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */    vTaskSuspendAll();    xPendedTicks += xTicksToCatchUp;    xYieldOccurred = xTaskResumeAll();    return xYieldOccurred;}/*----------------------------------------------------------*/#if ( INCLUDE_xTaskAbortDelay == 1 )    BaseType_t xTaskAbortDelay( TaskHandle_t xTask )    {        TCB_t * pxTCB = xTask;        BaseType_t xReturn;        configASSERT( pxTCB );        vTaskSuspendAll();        {            /* A task can only be prematurely removed from the Blocked state if             * it is actually in the Blocked state. */            if( eTaskGetState( xTask ) == eBlocked )            {                xReturn = pdPASS;                /* Remove the reference to the task from the blocked list.  An                 * interrupt won't touch the xStateListItem because the                 * scheduler is suspended. */                ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                /* Is the task waiting on an event also?  If so remove it from                 * the event list too.  Interrupts can touch the event list item,                 * even though the scheduler is suspended, so a critical section                 * is used. */                taskENTER_CRITICAL();                {                    if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )                    {                        ( void ) uxListRemove( &( pxTCB->xEventListItem ) );                        /* This lets the task know it was forcibly removed from the                         * blocked state so it should not re-evaluate its block time and                         * then block again. */                        pxTCB->ucDelayAborted = pdTRUE;                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                }                taskEXIT_CRITICAL();                /* Place the unblocked task into the appropriate ready list. */                prvAddTaskToReadyList( pxTCB );                /* A task being unblocked cannot cause an immediate context                 * switch if preemption is turned off. */                #if ( configUSE_PREEMPTION == 1 )                    {                        /* Preemption is on, but a context switch should only be                         *  performed if the unblocked task has a priority that is                         *  equal to or higher than the currently executing task. */                        if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )                        {                            /* Pend the yield to be performed when the scheduler                             * is unsuspended. */                            xYieldPending = pdTRUE;                        }                        else                        {                            mtCOVERAGE_TEST_MARKER();                        }                    }                #endif /* configUSE_PREEMPTION */            }            else            {                xReturn = pdFAIL;            }        }        ( void ) xTaskResumeAll();        return xReturn;    }#endif /* INCLUDE_xTaskAbortDelay *//*----------------------------------------------------------*/BaseType_t xTaskIncrementTick( void ){    TCB_t * pxTCB;    TickType_t xItemValue;    BaseType_t xSwitchRequired = pdFALSE;    /* Called by the portable layer each time a tick interrupt occurs.     * Increments the tick then checks to see if the new tick value will cause any     * tasks to be unblocked. */    traceTASK_INCREMENT_TICK( xTickCount );    if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )    {        /* Minor optimisation.  The tick count cannot change in this         * block. */        const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;        /* Increment the RTOS tick, switching the delayed and overflowed         * delayed lists if it wraps to 0. */        xTickCount = xConstTickCount;        if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */        {            taskSWITCH_DELAYED_LISTS();        }        else        {            mtCOVERAGE_TEST_MARKER();        }        /* See if this tick has made a timeout expire.  Tasks are stored in         * the  queue in the order of their wake time - meaning once one task         * has been found whose block time has not expired there is no need to         * look any further down the list. */        if( xConstTickCount >= xNextTaskUnblockTime )        {            for( ; ; )            {                if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )                {                    /* The delayed list is empty.  Set xNextTaskUnblockTime                     * to the maximum possible value so it is extremely                     * unlikely that the                     * if( xTickCount >= xNextTaskUnblockTime ) test will pass                     * next time through. */                    xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */                    break;                }                else                {                    /* The delayed list is not empty, get the value of the                     * item at the head of the delayed list.  This is the time                     * at which the task at the head of the delayed list must                     * be removed from the Blocked state. */                    pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */                    xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );                    if( xConstTickCount < xItemValue )                    {                        /* It is not time to unblock this item yet, but the                         * item value is the time at which the task at the head                         * of the blocked list must be removed from the Blocked                         * state -  so record the item value in                         * xNextTaskUnblockTime. */                        xNextTaskUnblockTime = xItemValue;                        break; /*lint !e9011 Code structure here is deedmed easier to understand with multiple breaks. */                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    /* It is time to remove the item from the Blocked state. */                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                    /* Is the task waiting on an event also?  If so remove                     * it from the event list. */                    if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )                    {                        ( void ) uxListRemove( &( pxTCB->xEventListItem ) );                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    /* Place the unblocked task into the appropriate ready                     * list. */                    prvAddTaskToReadyList( pxTCB );                    /* A task being unblocked cannot cause an immediate                     * context switch if preemption is turned off. */                    #if ( configUSE_PREEMPTION == 1 )                        {                            /* Preemption is on, but a context switch should                             * only be performed if the unblocked task has a                             * priority that is equal to or higher than the                             * currently executing task. */                            if( pxTCB->uxPriority >= pxCurrentTCB->uxPriority )                            {                                xSwitchRequired = pdTRUE;                            }                            else                            {                                mtCOVERAGE_TEST_MARKER();                            }                        }                    #endif /* configUSE_PREEMPTION */                }            }        }        /* Tasks of equal priority to the currently running task will share         * processing time (time slice) if preemption is on, and the application         * writer has not explicitly turned time slicing off. */        #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )            {                if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCB->uxPriority ] ) ) > ( UBaseType_t ) 1 )                {                    xSwitchRequired = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */        #if ( configUSE_TICK_HOOK == 1 )            {                /* Guard against the tick hook being called when the pended tick                 * count is being unwound (when the scheduler is being unlocked). */                if( xPendedTicks == ( TickType_t ) 0 )                {                    vApplicationTickHook();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        #endif /* configUSE_TICK_HOOK */        #if ( configUSE_PREEMPTION == 1 )            {                if( xYieldPending != pdFALSE )                {                    xSwitchRequired = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        #endif /* configUSE_PREEMPTION */    }    else    {        ++xPendedTicks;        /* The tick hook gets called at regular intervals, even if the         * scheduler is locked. */        #if ( configUSE_TICK_HOOK == 1 )            {                vApplicationTickHook();            }        #endif    }    return xSwitchRequired;}/*-----------------------------------------------------------*/#if ( configUSE_APPLICATION_TASK_TAG == 1 )    void vTaskSetApplicationTaskTag( TaskHandle_t xTask,                                     TaskHookFunction_t pxHookFunction )    {        TCB_t * xTCB;        /* If xTask is NULL then it is the task hook of the calling task that is         * getting set. */        if( xTask == NULL )        {            xTCB = ( TCB_t * ) pxCurrentTCB;        }        else        {            xTCB = xTask;        }        /* Save the hook function in the TCB.  A critical section is required as         * the value can be accessed from an interrupt. */        taskENTER_CRITICAL();        {            xTCB->pxTaskTag = pxHookFunction;        }        taskEXIT_CRITICAL();    }#endif /* configUSE_APPLICATION_TASK_TAG *//*-----------------------------------------------------------*/#if ( configUSE_APPLICATION_TASK_TAG == 1 )    TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )    {        TCB_t * pxTCB;        TaskHookFunction_t xReturn;        /* If xTask is NULL then set the calling task's hook. */        pxTCB = prvGetTCBFromHandle( xTask );        /* Save the hook function in the TCB.  A critical section is required as         * the value can be accessed from an interrupt. */        taskENTER_CRITICAL();        {            xReturn = pxTCB->pxTaskTag;        }        taskEXIT_CRITICAL();        return xReturn;    }#endif /* configUSE_APPLICATION_TASK_TAG *//*-----------------------------------------------------------*/#if ( configUSE_APPLICATION_TASK_TAG == 1 )    TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )    {        TCB_t * pxTCB;        TaskHookFunction_t xReturn;        UBaseType_t uxSavedInterruptStatus;        /* If xTask is NULL then set the calling task's hook. */        pxTCB = prvGetTCBFromHandle( xTask );        /* Save the hook function in the TCB.  A critical section is required as         * the value can be accessed from an interrupt. */        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();        {            xReturn = pxTCB->pxTaskTag;        }        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );        return xReturn;    }#endif /* configUSE_APPLICATION_TASK_TAG *//*-----------------------------------------------------------*/#if ( configUSE_APPLICATION_TASK_TAG == 1 )    BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,                                             void * pvParameter )    {        TCB_t * xTCB;        BaseType_t xReturn;        /* If xTask is NULL then we are calling our own task hook. */        if( xTask == NULL )        {            xTCB = pxCurrentTCB;        }        else        {            xTCB = xTask;        }        if( xTCB->pxTaskTag != NULL )        {            xReturn = xTCB->pxTaskTag( pvParameter );        }        else        {            xReturn = pdFAIL;        }        return xReturn;    }#endif /* configUSE_APPLICATION_TASK_TAG *//*-----------------------------------------------------------*/void vTaskSwitchContext( void ){    if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )    {        /* The scheduler is currently suspended - do not allow a context         * switch. */        xYieldPending = pdTRUE;    }    else    {        xYieldPending = pdFALSE;        traceTASK_SWITCHED_OUT();        #if ( configGENERATE_RUN_TIME_STATS == 1 )            {                #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE                    portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );                #else                    ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();                #endif                /* Add the amount of time the task has been running to the                 * accumulated time so far.  The time the task started running was                 * stored in ulTaskSwitchedInTime.  Note that there is no overflow                 * protection here so count values are only valid until the timer                 * overflows.  The guard against negative values is to protect                 * against suspect run time stat counter implementations - which                 * are provided by the application, not the kernel. */                if( ulTotalRunTime > ulTaskSwitchedInTime )                {                    pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );                }                else                {                    mtCOVERAGE_TEST_MARKER();                }                ulTaskSwitchedInTime = ulTotalRunTime;            }        #endif /* configGENERATE_RUN_TIME_STATS */        /* Check for stack overflow, if configured. */        taskCHECK_FOR_STACK_OVERFLOW();        /* Before the currently running task is switched out, save its errno. */        #if ( configUSE_POSIX_ERRNO == 1 )            {                pxCurrentTCB->iTaskErrno = FreeRTOS_errno;            }        #endif        /* Select a new task to run using either the generic C or port         * optimised asm code. */        taskSELECT_HIGHEST_PRIORITY_TASK(); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */        traceTASK_SWITCHED_IN();        /* After the new task is switched in, update the global errno. */        #if ( configUSE_POSIX_ERRNO == 1 )            {                FreeRTOS_errno = pxCurrentTCB->iTaskErrno;            }        #endif        #if ( configUSE_NEWLIB_REENTRANT == 1 )            {                /* Switch Newlib's _impure_ptr variable to point to the _reent                 * structure specific to this task.                 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html                 * for additional information. */                _impure_ptr = &( pxCurrentTCB->xNewLib_reent );            }        #endif /* configUSE_NEWLIB_REENTRANT */    }}/*-----------------------------------------------------------*/void vTaskPlaceOnEventList( List_t * const pxEventList,                            const TickType_t xTicksToWait ){    configASSERT( pxEventList );    /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE     * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */    /* Place the event list item of the TCB in the appropriate event list.     * This is placed in the list in priority order so the highest priority task     * is the first to be woken by the event.  The queue that contains the event     * list is locked, preventing simultaneous access from interrupts. */    vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );}/*-----------------------------------------------------------*/void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,                                     const TickType_t xItemValue,                                     const TickType_t xTicksToWait ){    configASSERT( pxEventList );    /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by     * the event groups implementation. */    configASSERT( uxSchedulerSuspended != 0 );    /* Store the item value in the event list item.  It is safe to access the     * event list item here as interrupts won't access the event list item of a     * task that is not in the Blocked state. */    listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );    /* Place the event list item of the TCB at the end of the appropriate event     * list.  It is safe to access the event list here because it is part of an     * event group implementation - and interrupts don't access event groups     * directly (instead they access them indirectly by pending function calls to     * the task level). */    vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );}/*-----------------------------------------------------------*/#if ( configUSE_TIMERS == 1 )    void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,                                          TickType_t xTicksToWait,                                          const BaseType_t xWaitIndefinitely )    {        configASSERT( pxEventList );        /* This function should not be called by application code hence the         * 'Restricted' in its name.  It is not part of the public API.  It is         * designed for use by kernel code, and has special calling requirements -         * it should be called with the scheduler suspended. */        /* Place the event list item of the TCB in the appropriate event list.         * In this case it is assume that this is the only task that is going to         * be waiting on this event list, so the faster vListInsertEnd() function         * can be used in place of vListInsert. */        vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );        /* If the task should block indefinitely then set the block time to a         * value that will be recognised as an indefinite delay inside the         * prvAddCurrentTaskToDelayedList() function. */        if( xWaitIndefinitely != pdFALSE )        {            xTicksToWait = portMAX_DELAY;        }        traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );        prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );    }#endif /* configUSE_TIMERS *//*-----------------------------------------------------------*/BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList ){    TCB_t * pxUnblockedTCB;    BaseType_t xReturn;    /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION.  It can also be     * called from a critical section within an ISR. */    /* The event list is sorted in priority order, so the first in the list can     * be removed as it is known to be the highest priority.  Remove the TCB from     * the delayed list, and add it to the ready list.     *     * If an event is for a queue that is locked then this function will never     * get called - the lock count on the queue will get modified instead.  This     * means exclusive access to the event list is guaranteed here.     *     * This function assumes that a check has already been made to ensure that     * pxEventList is not empty. */    pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */    configASSERT( pxUnblockedTCB );    ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );    if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )    {        ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );        prvAddTaskToReadyList( pxUnblockedTCB );        #if ( configUSE_TICKLESS_IDLE != 0 )            {                /* If a task is blocked on a kernel object then xNextTaskUnblockTime                 * might be set to the blocked task's time out time.  If the task is                 * unblocked for a reason other than a timeout xNextTaskUnblockTime is                 * normally left unchanged, because it is automatically reset to a new                 * value when the tick count equals xNextTaskUnblockTime.  However if                 * tickless idling is used it might be more important to enter sleep mode                 * at the earliest possible time - so reset xNextTaskUnblockTime here to                 * ensure it is updated at the earliest possible time. */                prvResetNextTaskUnblockTime();            }        #endif    }    else    {        /* The delayed and ready lists cannot be accessed, so hold this task         * pending until the scheduler is resumed. */        vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );    }    if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )    {        /* Return true if the task removed from the event list has a higher         * priority than the calling task.  This allows the calling task to know if         * it should force a context switch now. */        xReturn = pdTRUE;        /* Mark that a yield is pending in case the user is not using the         * "xHigherPriorityTaskWoken" parameter to an ISR safe FreeRTOS function. */        xYieldPending = pdTRUE;    }    else    {        xReturn = pdFALSE;    }    return xReturn;}/*-----------------------------------------------------------*/void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,                                        const TickType_t xItemValue ){    TCB_t * pxUnblockedTCB;    /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by     * the event flags implementation. */    configASSERT( uxSchedulerSuspended != pdFALSE );    /* Store the new item value in the event list. */    listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );    /* Remove the event list form the event flag.  Interrupts do not access     * event flags. */    pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */    configASSERT( pxUnblockedTCB );    ( void ) uxListRemove( pxEventListItem );    #if ( configUSE_TICKLESS_IDLE != 0 )        {            /* If a task is blocked on a kernel object then xNextTaskUnblockTime             * might be set to the blocked task's time out time.  If the task is             * unblocked for a reason other than a timeout xNextTaskUnblockTime is             * normally left unchanged, because it is automatically reset to a new             * value when the tick count equals xNextTaskUnblockTime.  However if             * tickless idling is used it might be more important to enter sleep mode             * at the earliest possible time - so reset xNextTaskUnblockTime here to             * ensure it is updated at the earliest possible time. */            prvResetNextTaskUnblockTime();        }    #endif    /* Remove the task from the delayed list and add it to the ready list.  The     * scheduler is suspended so interrupts will not be accessing the ready     * lists. */    ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );    prvAddTaskToReadyList( pxUnblockedTCB );    if( pxUnblockedTCB->uxPriority > pxCurrentTCB->uxPriority )    {        /* The unblocked task has a priority above that of the calling task, so         * a context switch is required.  This function is called with the         * scheduler suspended so xYieldPending is set so the context switch         * occurs immediately that the scheduler is resumed (unsuspended). */        xYieldPending = pdTRUE;    }}/*-----------------------------------------------------------*/void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut ){    configASSERT( pxTimeOut );    taskENTER_CRITICAL();    {        pxTimeOut->xOverflowCount = xNumOfOverflows;        pxTimeOut->xTimeOnEntering = xTickCount;    }    taskEXIT_CRITICAL();}/*-----------------------------------------------------------*/void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut ){    /* For internal use only as it does not use a critical section. */    pxTimeOut->xOverflowCount = xNumOfOverflows;    pxTimeOut->xTimeOnEntering = xTickCount;}/*-----------------------------------------------------------*/BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,                                 TickType_t * const pxTicksToWait ){    BaseType_t xReturn;    configASSERT( pxTimeOut );    configASSERT( pxTicksToWait );    taskENTER_CRITICAL();    {        /* Minor optimisation.  The tick count cannot change in this block. */        const TickType_t xConstTickCount = xTickCount;        const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;        #if ( INCLUDE_xTaskAbortDelay == 1 )            if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )            {                /* The delay was aborted, which is not the same as a time out,                 * but has the same result. */                pxCurrentTCB->ucDelayAborted = pdFALSE;                xReturn = pdTRUE;            }            else        #endif        #if ( INCLUDE_vTaskSuspend == 1 )            if( *pxTicksToWait == portMAX_DELAY )            {                /* If INCLUDE_vTaskSuspend is set to 1 and the block time                 * specified is the maximum block time then the task should block                 * indefinitely, and therefore never time out. */                xReturn = pdFALSE;            }            else        #endif        if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */        {            /* The tick count is greater than the time at which             * vTaskSetTimeout() was called, but has also overflowed since             * vTaskSetTimeOut() was called.  It must have wrapped all the way             * around and gone past again. This passed since vTaskSetTimeout()             * was called. */            xReturn = pdTRUE;            *pxTicksToWait = ( TickType_t ) 0;        }        else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */        {            /* Not a genuine timeout. Adjust parameters for time remaining. */            *pxTicksToWait -= xElapsedTime;            vTaskInternalSetTimeOutState( pxTimeOut );            xReturn = pdFALSE;        }        else        {            *pxTicksToWait = ( TickType_t ) 0;            xReturn = pdTRUE;        }    }    taskEXIT_CRITICAL();    return xReturn;}/*-----------------------------------------------------------*/void vTaskMissedYield( void ){    xYieldPending = pdTRUE;}/*-----------------------------------------------------------*/#if ( configUSE_TRACE_FACILITY == 1 )    UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )    {        UBaseType_t uxReturn;        TCB_t const * pxTCB;        if( xTask != NULL )        {            pxTCB = xTask;            uxReturn = pxTCB->uxTaskNumber;        }        else        {            uxReturn = 0U;        }        return uxReturn;    }#endif /* configUSE_TRACE_FACILITY *//*-----------------------------------------------------------*/#if ( configUSE_TRACE_FACILITY == 1 )    void vTaskSetTaskNumber( TaskHandle_t xTask,                             const UBaseType_t uxHandle )    {        TCB_t * pxTCB;        if( xTask != NULL )        {            pxTCB = xTask;            pxTCB->uxTaskNumber = uxHandle;        }    }#endif /* configUSE_TRACE_FACILITY *//* * ----------------------------------------------------------- * The Idle task. * ---------------------------------------------------------- * * The portTASK_FUNCTION() macro is used to allow port/compiler specific * language extensions.  The equivalent prototype for this function is: * * void prvIdleTask( void *pvParameters ); * */static portTASK_FUNCTION( prvIdleTask, pvParameters ){    /* Stop warnings. */    ( void ) pvParameters;    /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE     * SCHEDULER IS STARTED. **/    /* In case a task that has a secure context deletes itself, in which case     * the idle task is responsible for deleting the task's secure context, if     * any. */    portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );    for( ; ; )    {        /* See if any tasks have deleted themselves - if so then the idle task         * is responsible for freeing the deleted task's TCB and stack. */        prvCheckTasksWaitingTermination();        #if ( configUSE_PREEMPTION == 0 )            {                /* If we are not using preemption we keep forcing a task switch to                 * see if any other task has become available.  If we are using                 * preemption we don't need to do this as any task becoming available                 * will automatically get the processor anyway. */                taskYIELD();            }        #endif /* configUSE_PREEMPTION */        #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )            {                /* When using preemption tasks of equal priority will be                 * timesliced.  If a task that is sharing the idle priority is ready                 * to run then the idle task should yield before the end of the                 * timeslice.                 *                 * A critical region is not required here as we are just reading from                 * the list, and an occasional incorrect value will not matter.  If                 * the ready list at the idle priority contains more than one task                 * then a task other than the idle task is ready to execute. */                if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) 1 )                {                    taskYIELD();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */        #if ( configUSE_IDLE_HOOK == 1 )            {                extern void vApplicationIdleHook( void );                /* Call the user defined function from within the idle task.  This                 * allows the application designer to add background functionality                 * without the overhead of a separate task.                 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,                 * CALL A FUNCTION THAT MIGHT BLOCK. */                vApplicationIdleHook();            }        #endif /* configUSE_IDLE_HOOK */        /* This conditional compilation should use inequality to 0, not equality         * to 1.  This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when         * user defined low power mode  implementations require         * configUSE_TICKLESS_IDLE to be set to a value other than 1. */        #if ( configUSE_TICKLESS_IDLE != 0 )            {                TickType_t xExpectedIdleTime;                /* It is not desirable to suspend then resume the scheduler on                 * each iteration of the idle task.  Therefore, a preliminary                 * test of the expected idle time is performed without the                 * scheduler suspended.  The result here is not necessarily                 * valid. */                xExpectedIdleTime = prvGetExpectedIdleTime();                if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )                {                    vTaskSuspendAll();                    {                        /* Now the scheduler is suspended, the expected idle                         * time can be sampled again, and this time its value can                         * be used. */                        configASSERT( xNextTaskUnblockTime >= xTickCount );                        xExpectedIdleTime = prvGetExpectedIdleTime();                        /* Define the following macro to set xExpectedIdleTime to 0                         * if the application does not want                         * portSUPPRESS_TICKS_AND_SLEEP() to be called. */                        configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );                        if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )                        {                            traceLOW_POWER_IDLE_BEGIN();                            portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );                            traceLOW_POWER_IDLE_END();                        }                        else                        {                            mtCOVERAGE_TEST_MARKER();                        }                    }                    ( void ) xTaskResumeAll();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        #endif /* configUSE_TICKLESS_IDLE */    }}/*-----------------------------------------------------------*/#if ( configUSE_TICKLESS_IDLE != 0 )    eSleepModeStatus eTaskConfirmSleepModeStatus( void )    {        /* The idle task exists in addition to the application tasks. */        const UBaseType_t uxNonApplicationTasks = 1;        eSleepModeStatus eReturn = eStandardSleep;        /* This function must be called from a critical section. */        if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )        {            /* A task was made ready while the scheduler was suspended. */            eReturn = eAbortSleep;        }        else if( xYieldPending != pdFALSE )        {            /* A yield was pended while the scheduler was suspended. */            eReturn = eAbortSleep;        }        else if( xPendedTicks != 0 )        {            /* A tick interrupt has already occurred but was held pending             * because the scheduler is suspended. */            eReturn = eAbortSleep;        }        else        {            /* If all the tasks are in the suspended list (which might mean they             * have an infinite block time rather than actually being suspended)             * then it is safe to turn all clocks off and just wait for external             * interrupts. */            if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )            {                eReturn = eNoTasksWaitingTimeout;            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        return eReturn;    }#endif /* configUSE_TICKLESS_IDLE *//*-----------------------------------------------------------*/#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )    void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,                                            BaseType_t xIndex,                                            void * pvValue )    {        TCB_t * pxTCB;        if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )        {            pxTCB = prvGetTCBFromHandle( xTaskToSet );            configASSERT( pxTCB != NULL );            pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;        }    }#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS *//*-----------------------------------------------------------*/#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )    void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,                                               BaseType_t xIndex )    {        void * pvReturn = NULL;        TCB_t * pxTCB;        if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )        {            pxTCB = prvGetTCBFromHandle( xTaskToQuery );            pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];        }        else        {            pvReturn = NULL;        }        return pvReturn;    }#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS *//*-----------------------------------------------------------*/#if ( portUSING_MPU_WRAPPERS == 1 )    void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,                                  const MemoryRegion_t * const xRegions )    {        TCB_t * pxTCB;        /* If null is passed in here then we are modifying the MPU settings of         * the calling task. */        pxTCB = prvGetTCBFromHandle( xTaskToModify );        vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );    }#endif /* portUSING_MPU_WRAPPERS *//*-----------------------------------------------------------*/static void prvInitialiseTaskLists( void ){    UBaseType_t uxPriority;    for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )    {        vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );    }    vListInitialise( &xDelayedTaskList1 );    vListInitialise( &xDelayedTaskList2 );    vListInitialise( &xPendingReadyList );    #if ( INCLUDE_vTaskDelete == 1 )        {            vListInitialise( &xTasksWaitingTermination );        }    #endif /* INCLUDE_vTaskDelete */    #if ( INCLUDE_vTaskSuspend == 1 )        {            vListInitialise( &xSuspendedTaskList );        }    #endif /* INCLUDE_vTaskSuspend */    /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList     * using list2. */    pxDelayedTaskList = &xDelayedTaskList1;    pxOverflowDelayedTaskList = &xDelayedTaskList2;}/*-----------------------------------------------------------*/static void prvCheckTasksWaitingTermination( void ){    /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/    #if ( INCLUDE_vTaskDelete == 1 )        {            TCB_t * pxTCB;            /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()             * being called too often in the idle task. */            while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )            {                taskENTER_CRITICAL();                {                    pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                    --uxCurrentNumberOfTasks;                    --uxDeletedTasksWaitingCleanUp;                }                taskEXIT_CRITICAL();                prvDeleteTCB( pxTCB );            }        }    #endif /* INCLUDE_vTaskDelete */}/*-----------------------------------------------------------*/#if ( configUSE_TRACE_FACILITY == 1 )    void vTaskGetInfo( TaskHandle_t xTask,                       TaskStatus_t * pxTaskStatus,                       BaseType_t xGetFreeStackSpace,                       eTaskState eState )    {        TCB_t * pxTCB;        /* xTask is NULL then get the state of the calling task. */        pxTCB = prvGetTCBFromHandle( xTask );        pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;        pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );        pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;        pxTaskStatus->pxStackBase = pxTCB->pxStack;        pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;        #if ( configUSE_MUTEXES == 1 )            {                pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;            }        #else            {                pxTaskStatus->uxBasePriority = 0;            }        #endif        #if ( configGENERATE_RUN_TIME_STATS == 1 )            {                pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;            }        #else            {                pxTaskStatus->ulRunTimeCounter = 0;            }        #endif        /* Obtaining the task state is a little fiddly, so is only done if the         * value of eState passed into this function is eInvalid - otherwise the         * state is just set to whatever is passed in. */        if( eState != eInvalid )        {            if( pxTCB == pxCurrentTCB )            {                pxTaskStatus->eCurrentState = eRunning;            }            else            {                pxTaskStatus->eCurrentState = eState;                #if ( INCLUDE_vTaskSuspend == 1 )                    {                        /* If the task is in the suspended list then there is a                         *  chance it is actually just blocked indefinitely - so really                         *  it should be reported as being in the Blocked state. */                        if( eState == eSuspended )                        {                            vTaskSuspendAll();                            {                                if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )                                {                                    pxTaskStatus->eCurrentState = eBlocked;                                }                            }                            ( void ) xTaskResumeAll();                        }                    }                #endif /* INCLUDE_vTaskSuspend */            }        }        else        {            pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );        }        /* Obtaining the stack space takes some time, so the xGetFreeStackSpace         * parameter is provided to allow it to be skipped. */        if( xGetFreeStackSpace != pdFALSE )        {            #if ( portSTACK_GROWTH > 0 )                {                    pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );                }            #else                {                    pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );                }            #endif        }        else        {            pxTaskStatus->usStackHighWaterMark = 0;        }    }#endif /* configUSE_TRACE_FACILITY *//*-----------------------------------------------------------*/#if ( configUSE_TRACE_FACILITY == 1 )    static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,                                                     List_t * pxList,                                                     eTaskState eState )    {        configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;        UBaseType_t uxTask = 0;        if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )        {            listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */            /* Populate an TaskStatus_t structure within the             * pxTaskStatusArray array for each task that is referenced from             * pxList.  See the definition of TaskStatus_t in task.h for the             * meaning of each TaskStatus_t structure member. */            do            {                listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */                vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );                uxTask++;            } while( pxNextTCB != pxFirstTCB );        }        else        {            mtCOVERAGE_TEST_MARKER();        }        return uxTask;    }#endif /* configUSE_TRACE_FACILITY *//*-----------------------------------------------------------*/#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )    static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )    {        uint32_t ulCount = 0U;        while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )        {            pucStackByte -= portSTACK_GROWTH;            ulCount++;        }        ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */        return ( configSTACK_DEPTH_TYPE ) ulCount;    }#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) *//*-----------------------------------------------------------*/#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the * user to determine the return type.  It gets around the problem of the value * overflowing on 8-bit types without breaking backward compatibility for * applications that expect an 8-bit return type. */    configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )    {        TCB_t * pxTCB;        uint8_t * pucEndOfStack;        configSTACK_DEPTH_TYPE uxReturn;        /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are         * the same except for their return type.  Using configSTACK_DEPTH_TYPE         * allows the user to determine the return type.  It gets around the         * problem of the value overflowing on 8-bit types without breaking         * backward compatibility for applications that expect an 8-bit return         * type. */        pxTCB = prvGetTCBFromHandle( xTask );        #if portSTACK_GROWTH < 0            {                pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;            }        #else            {                pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;            }        #endif        uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );        return uxReturn;    }#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 *//*-----------------------------------------------------------*/#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )    UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )    {        TCB_t * pxTCB;        uint8_t * pucEndOfStack;        UBaseType_t uxReturn;        pxTCB = prvGetTCBFromHandle( xTask );        #if portSTACK_GROWTH < 0            {                pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;            }        #else            {                pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;            }        #endif        uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );        return uxReturn;    }#endif /* INCLUDE_uxTaskGetStackHighWaterMark *//*-----------------------------------------------------------*/#if ( INCLUDE_vTaskDelete == 1 )    static void prvDeleteTCB( TCB_t * pxTCB )    {        /* This call is required specifically for the TriCore port.  It must be         * above the vPortFree() calls.  The call is also used by ports/demos that         * want to allocate and clean RAM statically. */        portCLEAN_UP_TCB( pxTCB );        /* Free up the memory allocated by the scheduler for the task.  It is up         * to the task to free any memory allocated at the application level.         * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html         * for additional information. */        #if ( configUSE_NEWLIB_REENTRANT == 1 )            {                _reclaim_reent( &( pxTCB->xNewLib_reent ) );            }        #endif /* configUSE_NEWLIB_REENTRANT */        #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )            {                /* The task can only have been allocated dynamically - free both                 * the stack and TCB. */                vPortFree( pxTCB->pxStack );                vPortFree( pxTCB );            }        #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */            {                /* The task could have been allocated statically or dynamically, so                 * check what was statically allocated before trying to free the                 * memory. */                if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )                {                    /* Both the stack and TCB were allocated dynamically, so both                     * must be freed. */                    vPortFree( pxTCB->pxStack );                    vPortFree( pxTCB );                }                else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )                {                    /* Only the stack was statically allocated, so the TCB is the                     * only memory that must be freed. */                    vPortFree( pxTCB );                }                else                {                    /* Neither the stack nor the TCB were allocated dynamically, so                     * nothing needs to be freed. */                    configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );                    mtCOVERAGE_TEST_MARKER();                }            }        #endif /* configSUPPORT_DYNAMIC_ALLOCATION */    }#endif /* INCLUDE_vTaskDelete *//*-----------------------------------------------------------*/static void prvResetNextTaskUnblockTime( void ){    if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )    {        /* The new current delayed list is empty.  Set xNextTaskUnblockTime to         * the maximum possible value so it is  extremely unlikely that the         * if( xTickCount >= xNextTaskUnblockTime ) test will pass until         * there is an item in the delayed list. */        xNextTaskUnblockTime = portMAX_DELAY;    }    else    {        /* The new current delayed list is not empty, get the value of         * the item at the head of the delayed list.  This is the time at         * which the task at the head of the delayed list should be removed         * from the Blocked state. */        xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );    }}/*-----------------------------------------------------------*/#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )    TaskHandle_t xTaskGetCurrentTaskHandle( void )    {        TaskHandle_t xReturn;        /* A critical section is not required as this is not called from         * an interrupt and the current TCB will always be the same for any         * individual execution thread. */        xReturn = pxCurrentTCB;        return xReturn;    }#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) *//*-----------------------------------------------------------*/#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )    BaseType_t xTaskGetSchedulerState( void )    {        BaseType_t xReturn;        if( xSchedulerRunning == pdFALSE )        {            xReturn = taskSCHEDULER_NOT_STARTED;        }        else        {            if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )            {                xReturn = taskSCHEDULER_RUNNING;            }            else            {                xReturn = taskSCHEDULER_SUSPENDED;            }        }        return xReturn;    }#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) *//*-----------------------------------------------------------*/#if ( configUSE_MUTEXES == 1 )    BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )    {        TCB_t * const pxMutexHolderTCB = pxMutexHolder;        BaseType_t xReturn = pdFALSE;        /* If the mutex was given back by an interrupt while the queue was         * locked then the mutex holder might now be NULL.  _RB_ Is this still         * needed as interrupts can no longer use mutexes? */        if( pxMutexHolder != NULL )        {            /* If the holder of the mutex has a priority below the priority of             * the task attempting to obtain the mutex then it will temporarily             * inherit the priority of the task attempting to obtain the mutex. */            if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )            {                /* Adjust the mutex holder state to account for its new                 * priority.  Only reset the event list item value if the value is                 * not being used for anything else. */                if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )                {                    listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */                }                else                {                    mtCOVERAGE_TEST_MARKER();                }                /* If the task being modified is in the ready state it will need                 * to be moved into a new list. */                if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )                {                    if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )                    {                        /* It is known that the task is in its ready list so                         * there is no need to check again and the port level                         * reset macro can be called directly. */                        portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    /* Inherit the priority before being moved into the new list. */                    pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;                    prvAddTaskToReadyList( pxMutexHolderTCB );                }                else                {                    /* Just inherit the priority. */                    pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;                }                traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );                /* Inheritance occurred. */                xReturn = pdTRUE;            }            else            {                if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )                {                    /* The base priority of the mutex holder is lower than the                     * priority of the task attempting to take the mutex, but the                     * current priority of the mutex holder is not lower than the                     * priority of the task attempting to take the mutex.                     * Therefore the mutex holder must have already inherited a                     * priority, but inheritance would have occurred if that had                     * not been the case. */                    xReturn = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }        return xReturn;    }#endif /* configUSE_MUTEXES *//*-----------------------------------------------------------*/#if ( configUSE_MUTEXES == 1 )    BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )    {        TCB_t * const pxTCB = pxMutexHolder;        BaseType_t xReturn = pdFALSE;        if( pxMutexHolder != NULL )        {            /* A task can only have an inherited priority if it holds the mutex.             * If the mutex is held by a task then it cannot be given from an             * interrupt, and if a mutex is given by the holding task then it must             * be the running state task. */            configASSERT( pxTCB == pxCurrentTCB );            configASSERT( pxTCB->uxMutexesHeld );            ( pxTCB->uxMutexesHeld )--;            /* Has the holder of the mutex inherited the priority of another             * task? */            if( pxTCB->uxPriority != pxTCB->uxBasePriority )            {                /* Only disinherit if no other mutexes are held. */                if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )                {                    /* A task can only have an inherited priority if it holds                     * the mutex.  If the mutex is held by a task then it cannot be                     * given from an interrupt, and if a mutex is given by the                     * holding task then it must be the running state task.  Remove                     * the holding task from the ready list. */                    if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )                    {                        portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    /* Disinherit the priority before adding the task into the                     * new  ready list. */                    traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );                    pxTCB->uxPriority = pxTCB->uxBasePriority;                    /* Reset the event list item value.  It cannot be in use for                     * any other purpose if this task is running, and it must be                     * running to give back the mutex. */                    listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */                    prvAddTaskToReadyList( pxTCB );                    /* Return true to indicate that a context switch is required.                     * This is only actually required in the corner case whereby                     * multiple mutexes were held and the mutexes were given back                     * in an order different to that in which they were taken.                     * If a context switch did not occur when the first mutex was                     * returned, even if a task was waiting on it, then a context                     * switch should occur when the last mutex is returned whether                     * a task is waiting on it or not. */                    xReturn = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }        return xReturn;    }#endif /* configUSE_MUTEXES *//*-----------------------------------------------------------*/#if ( configUSE_MUTEXES == 1 )    void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,                                              UBaseType_t uxHighestPriorityWaitingTask )    {        TCB_t * const pxTCB = pxMutexHolder;        UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;        const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;        if( pxMutexHolder != NULL )        {            /* If pxMutexHolder is not NULL then the holder must hold at least             * one mutex. */            configASSERT( pxTCB->uxMutexesHeld );            /* Determine the priority to which the priority of the task that             * holds the mutex should be set.  This will be the greater of the             * holding task's base priority and the priority of the highest             * priority task that is waiting to obtain the mutex. */            if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )            {                uxPriorityToUse = uxHighestPriorityWaitingTask;            }            else            {                uxPriorityToUse = pxTCB->uxBasePriority;            }            /* Does the priority need to change? */            if( pxTCB->uxPriority != uxPriorityToUse )            {                /* Only disinherit if no other mutexes are held.  This is a                 * simplification in the priority inheritance implementation.  If                 * the task that holds the mutex is also holding other mutexes then                 * the other mutexes may have caused the priority inheritance. */                if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )                {                    /* If a task has timed out because it already holds the                     * mutex it was trying to obtain then it cannot of inherited                     * its own priority. */                    configASSERT( pxTCB != pxCurrentTCB );                    /* Disinherit the priority, remembering the previous                     * priority to facilitate determining the subject task's                     * state. */                    traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );                    uxPriorityUsedOnEntry = pxTCB->uxPriority;                    pxTCB->uxPriority = uxPriorityToUse;                    /* Only reset the event list item value if the value is not                     * being used for anything else. */                    if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )                    {                        listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                    /* If the running task is not the task that holds the mutex                     * then the task that holds the mutex could be in either the                     * Ready, Blocked or Suspended states.  Only remove the task                     * from its current state list if it is in the Ready state as                     * the task's priority is going to change and there is one                     * Ready list per priority. */                    if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )                    {                        if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )                        {                            /* It is known that the task is in its ready list so                             * there is no need to check again and the port level                             * reset macro can be called directly. */                            portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );                        }                        else                        {                            mtCOVERAGE_TEST_MARKER();                        }                        prvAddTaskToReadyList( pxTCB );                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* configUSE_MUTEXES *//*-----------------------------------------------------------*/#if ( portCRITICAL_NESTING_IN_TCB == 1 )    void vTaskEnterCritical( void )    {        portDISABLE_INTERRUPTS();        if( xSchedulerRunning != pdFALSE )        {            ( pxCurrentTCB->uxCriticalNesting )++;            /* This is not the interrupt safe version of the enter critical             * function so  assert() if it is being called from an interrupt             * context.  Only API functions that end in "FromISR" can be used in an             * interrupt.  Only assert if the critical nesting count is 1 to             * protect against recursive calls if the assert function also uses a             * critical section. */            if( pxCurrentTCB->uxCriticalNesting == 1 )            {                portASSERT_IF_IN_ISR();            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* portCRITICAL_NESTING_IN_TCB *//*-----------------------------------------------------------*/#if ( portCRITICAL_NESTING_IN_TCB == 1 )    void vTaskExitCritical( void )    {        if( xSchedulerRunning != pdFALSE )        {            if( pxCurrentTCB->uxCriticalNesting > 0U )            {                ( pxCurrentTCB->uxCriticalNesting )--;                if( pxCurrentTCB->uxCriticalNesting == 0U )                {                    portENABLE_INTERRUPTS();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* portCRITICAL_NESTING_IN_TCB *//*-----------------------------------------------------------*/#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )    static char * prvWriteNameToBuffer( char * pcBuffer,                                        const char * pcTaskName )    {        size_t x;        /* Start by copying the entire string. */        strcpy( pcBuffer, pcTaskName );        /* Pad the end of the string with spaces to ensure columns line up when         * printed out. */        for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )        {            pcBuffer[ x ] = ' ';        }        /* Terminate. */        pcBuffer[ x ] = ( char ) 0x00;        /* Return the new end of string. */        return &( pcBuffer[ x ] );    }#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) *//*-----------------------------------------------------------*/#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )    void vTaskList( char * pcWriteBuffer )    {        TaskStatus_t * pxTaskStatusArray;        UBaseType_t uxArraySize, x;        char cStatus;        /*         * PLEASE NOTE:         *         * This function is provided for convenience only, and is used by many         * of the demo applications.  Do not consider it to be part of the         * scheduler.         *         * vTaskList() calls uxTaskGetSystemState(), then formats part of the         * uxTaskGetSystemState() output into a human readable table that         * displays task names, states and stack usage.         *         * vTaskList() has a dependency on the sprintf() C library function that         * might bloat the code size, use a lot of stack, and provide different         * results on different platforms.  An alternative, tiny, third party,         * and limited functionality implementation of sprintf() is provided in         * many of the FreeRTOS/Demo sub-directories in a file called         * printf-stdarg.c (note printf-stdarg.c does not provide a full         * snprintf() implementation!).         *         * It is recommended that production systems call uxTaskGetSystemState()         * directly to get access to raw stats data, rather than indirectly         * through a call to vTaskList().         */        /* Make sure the write buffer does not contain a string. */        *pcWriteBuffer = ( char ) 0x00;        /* Take a snapshot of the number of tasks in case it changes while this         * function is executing. */        uxArraySize = uxCurrentNumberOfTasks;        /* Allocate an array index for each task.  NOTE!  if         * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will         * equate to NULL. */        pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */        if( pxTaskStatusArray != NULL )        {            /* Generate the (binary) data. */            uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );            /* Create a human readable table from the binary data. */            for( x = 0; x < uxArraySize; x++ )            {                switch( pxTaskStatusArray[ x ].eCurrentState )                {                    case eRunning:                        cStatus = tskRUNNING_CHAR;                        break;                    case eReady:                        cStatus = tskREADY_CHAR;                        break;                    case eBlocked:                        cStatus = tskBLOCKED_CHAR;                        break;                    case eSuspended:                        cStatus = tskSUSPENDED_CHAR;                        break;                    case eDeleted:                        cStatus = tskDELETED_CHAR;                        break;                    case eInvalid: /* Fall through. */                    default:       /* Should not get here, but it is included                                    * to prevent static checking errors. */                        cStatus = ( char ) 0x00;                        break;                }                /* Write the task name to the string, padding with spaces so it                 * can be printed in tabular form more easily. */                pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );                /* Write the rest of the string. */                sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */                pcWriteBuffer += strlen( pcWriteBuffer );                                                                                                                                                                                                /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */            }            /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION             * is 0 then vPortFree() will be #defined to nothing. */            vPortFree( pxTaskStatusArray );        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) *//*----------------------------------------------------------*/#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )    void vTaskGetRunTimeStats( char * pcWriteBuffer )    {        TaskStatus_t * pxTaskStatusArray;        UBaseType_t uxArraySize, x;        uint32_t ulTotalTime, ulStatsAsPercentage;        #if ( configUSE_TRACE_FACILITY != 1 )            {                #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().            }        #endif        /*         * PLEASE NOTE:         *         * This function is provided for convenience only, and is used by many         * of the demo applications.  Do not consider it to be part of the         * scheduler.         *         * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part         * of the uxTaskGetSystemState() output into a human readable table that         * displays the amount of time each task has spent in the Running state         * in both absolute and percentage terms.         *         * vTaskGetRunTimeStats() has a dependency on the sprintf() C library         * function that might bloat the code size, use a lot of stack, and         * provide different results on different platforms.  An alternative,         * tiny, third party, and limited functionality implementation of         * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in         * a file called printf-stdarg.c (note printf-stdarg.c does not provide         * a full snprintf() implementation!).         *         * It is recommended that production systems call uxTaskGetSystemState()         * directly to get access to raw stats data, rather than indirectly         * through a call to vTaskGetRunTimeStats().         */        /* Make sure the write buffer does not contain a string. */        *pcWriteBuffer = ( char ) 0x00;        /* Take a snapshot of the number of tasks in case it changes while this         * function is executing. */        uxArraySize = uxCurrentNumberOfTasks;        /* Allocate an array index for each task.  NOTE!  If         * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will         * equate to NULL. */        pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */        if( pxTaskStatusArray != NULL )        {            /* Generate the (binary) data. */            uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );            /* For percentage calculations. */            ulTotalTime /= 100UL;            /* Avoid divide by zero errors. */            if( ulTotalTime > 0UL )            {                /* Create a human readable table from the binary data. */                for( x = 0; x < uxArraySize; x++ )                {                    /* What percentage of the total run time has the task used?                     * This will always be rounded down to the nearest integer.                     * ulTotalRunTimeDiv100 has already been divided by 100. */                    ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;                    /* Write the task name to the string, padding with                     * spaces so it can be printed in tabular form more                     * easily. */                    pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );                    if( ulStatsAsPercentage > 0UL )                    {                        #ifdef portLU_PRINTF_SPECIFIER_REQUIRED                            {                                sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );                            }                        #else                            {                                /* sizeof( int ) == sizeof( long ) so a smaller                                 * printf() library can be used. */                                sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */                            }                        #endif                    }                    else                    {                        /* If the percentage is zero here then the task has                         * consumed less than 1% of the total run time. */                        #ifdef portLU_PRINTF_SPECIFIER_REQUIRED                            {                                sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );                            }                        #else                            {                                /* sizeof( int ) == sizeof( long ) so a smaller                                 * printf() library can be used. */                                sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */                            }                        #endif                    }                    pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }            /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION             * is 0 then vPortFree() will be #defined to nothing. */            vPortFree( pxTaskStatusArray );        }        else        {            mtCOVERAGE_TEST_MARKER();        }    }#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) *//*-----------------------------------------------------------*/TickType_t uxTaskResetEventItemValue( void ){    TickType_t uxReturn;    uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );    /* Reset the event list item to its normal value - so it can be used with     * queues and semaphores. */    listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */    return uxReturn;}/*-----------------------------------------------------------*/#if ( configUSE_MUTEXES == 1 )    TaskHandle_t pvTaskIncrementMutexHeldCount( void )    {        /* If xSemaphoreCreateMutex() is called before any tasks have been created         * then pxCurrentTCB will be NULL. */        if( pxCurrentTCB != NULL )        {            ( pxCurrentTCB->uxMutexesHeld )++;        }        return pxCurrentTCB;    }#endif /* configUSE_MUTEXES *//*-----------------------------------------------------------*/#if ( configUSE_TASK_NOTIFICATIONS == 1 )    uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,                                      BaseType_t xClearCountOnExit,                                      TickType_t xTicksToWait )    {        uint32_t ulReturn;        configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );        taskENTER_CRITICAL();        {            /* Only block if the notification count is not already non-zero. */            if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )            {                /* Mark this task as waiting for a notification. */                pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;                if( xTicksToWait > ( TickType_t ) 0 )                {                    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );                    traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );                    /* All ports are written to allow a yield in a critical                     * section (some will yield immediately, others wait until the                     * critical section exits) - but it is not something that                     * application code should ever do. */                    portYIELD_WITHIN_API();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        taskEXIT_CRITICAL();        taskENTER_CRITICAL();        {            traceTASK_NOTIFY_TAKE( uxIndexToWait );            ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];            if( ulReturn != 0UL )            {                if( xClearCountOnExit != pdFALSE )                {                    pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;                }                else                {                    pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }            pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;        }        taskEXIT_CRITICAL();        return ulReturn;    }#endif /* configUSE_TASK_NOTIFICATIONS *//*-----------------------------------------------------------*/#if ( configUSE_TASK_NOTIFICATIONS == 1 )    BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,                                       uint32_t ulBitsToClearOnEntry,                                       uint32_t ulBitsToClearOnExit,                                       uint32_t * pulNotificationValue,                                       TickType_t xTicksToWait )    {        BaseType_t xReturn;        configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );        taskENTER_CRITICAL();        {            /* Only block if a notification is not already pending. */            if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )            {                /* Clear bits in the task's notification value as bits may get                 * set  by the notifying task or interrupt.  This can be used to                 * clear the value to zero. */                pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;                /* Mark this task as waiting for a notification. */                pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;                if( xTicksToWait > ( TickType_t ) 0 )                {                    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );                    traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );                    /* All ports are written to allow a yield in a critical                     * section (some will yield immediately, others wait until the                     * critical section exits) - but it is not something that                     * application code should ever do. */                    portYIELD_WITHIN_API();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        taskEXIT_CRITICAL();        taskENTER_CRITICAL();        {            traceTASK_NOTIFY_WAIT( uxIndexToWait );            if( pulNotificationValue != NULL )            {                /* Output the current notification value, which may or may not                 * have changed. */                *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];            }            /* If ucNotifyValue is set then either the task never entered the             * blocked state (because a notification was already pending) or the             * task unblocked because of a notification.  Otherwise the task             * unblocked because of a timeout. */            if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )            {                /* A notification was not received. */                xReturn = pdFALSE;            }            else            {                /* A notification was already pending or a notification was                 * received while the task was waiting. */                pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;                xReturn = pdTRUE;            }            pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;        }        taskEXIT_CRITICAL();        return xReturn;    }#endif /* configUSE_TASK_NOTIFICATIONS *//*-----------------------------------------------------------*/#if ( configUSE_TASK_NOTIFICATIONS == 1 )    BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,                                   UBaseType_t uxIndexToNotify,                                   uint32_t ulValue,                                   eNotifyAction eAction,                                   uint32_t * pulPreviousNotificationValue )    {        TCB_t * pxTCB;        BaseType_t xReturn = pdPASS;        uint8_t ucOriginalNotifyState;        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );        configASSERT( xTaskToNotify );        pxTCB = xTaskToNotify;        taskENTER_CRITICAL();        {            if( pulPreviousNotificationValue != NULL )            {                *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];            }            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;            switch( eAction )            {                case eSetBits:                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;                    break;                case eIncrement:                    ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;                    break;                case eSetValueWithOverwrite:                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;                    break;                case eSetValueWithoutOverwrite:                    if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )                    {                        pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;                    }                    else                    {                        /* The value could not be written to the task. */                        xReturn = pdFAIL;                    }                    break;                case eNoAction:                    /* The task is being notified without its notify value being                     * updated. */                    break;                default:                    /* Should not get here if all enums are handled.                     * Artificially force an assert by testing a value the                     * compiler can't assume is const. */                    configASSERT( xTickCount == ( TickType_t ) 0 );                    break;            }            traceTASK_NOTIFY( uxIndexToNotify );            /* If the task is in the blocked state specifically to wait for a             * notification then unblock it now. */            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )            {                ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                prvAddTaskToReadyList( pxTCB );                /* The task should not have been on an event list. */                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );                #if ( configUSE_TICKLESS_IDLE != 0 )                    {                        /* If a task is blocked waiting for a notification then                         * xNextTaskUnblockTime might be set to the blocked task's time                         * out time.  If the task is unblocked for a reason other than                         * a timeout xNextTaskUnblockTime is normally left unchanged,                         * because it will automatically get reset to a new value when                         * the tick count equals xNextTaskUnblockTime.  However if                         * tickless idling is used it might be more important to enter                         * sleep mode at the earliest possible time - so reset                         * xNextTaskUnblockTime here to ensure it is updated at the                         * earliest possible time. */                        prvResetNextTaskUnblockTime();                    }                #endif                if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )                {                    /* The notified task has a priority above the currently                     * executing task so a yield is required. */                    taskYIELD_IF_USING_PREEMPTION();                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            else            {                mtCOVERAGE_TEST_MARKER();            }        }        taskEXIT_CRITICAL();        return xReturn;    }#endif /* configUSE_TASK_NOTIFICATIONS *//*-----------------------------------------------------------*/#if ( configUSE_TASK_NOTIFICATIONS == 1 )    BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,                                          UBaseType_t uxIndexToNotify,                                          uint32_t ulValue,                                          eNotifyAction eAction,                                          uint32_t * pulPreviousNotificationValue,                                          BaseType_t * pxHigherPriorityTaskWoken )    {        TCB_t * pxTCB;        uint8_t ucOriginalNotifyState;        BaseType_t xReturn = pdPASS;        UBaseType_t uxSavedInterruptStatus;        configASSERT( xTaskToNotify );        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );        /* RTOS ports that support interrupt nesting have the concept of a         * maximum  system call (or maximum API call) interrupt priority.         * Interrupts that are  above the maximum system call priority are keep         * permanently enabled, even when the RTOS kernel is in a critical section,         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()         * is defined in FreeRTOSConfig.h then         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion         * failure if a FreeRTOS API function is called from an interrupt that has         * been assigned a priority above the configured maximum system call         * priority.  Only FreeRTOS functions that end in FromISR can be called         * from interrupts  that have been assigned a priority at or (logically)         * below the maximum system call interrupt priority.  FreeRTOS maintains a         * separate interrupt safe API to ensure interrupt entry is as fast and as         * simple as possible.  More information (albeit Cortex-M specific) is         * provided on the following link:         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();        pxTCB = xTaskToNotify;        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();        {            if( pulPreviousNotificationValue != NULL )            {                *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];            }            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;            switch( eAction )            {                case eSetBits:                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;                    break;                case eIncrement:                    ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;                    break;                case eSetValueWithOverwrite:                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;                    break;                case eSetValueWithoutOverwrite:                    if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )                    {                        pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;                    }                    else                    {                        /* The value could not be written to the task. */                        xReturn = pdFAIL;                    }                    break;                case eNoAction:                    /* The task is being notified without its notify value being                     * updated. */                    break;                default:                    /* Should not get here if all enums are handled.                     * Artificially force an assert by testing a value the                     * compiler can't assume is const. */                    configASSERT( xTickCount == ( TickType_t ) 0 );                    break;            }            traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );            /* If the task is in the blocked state specifically to wait for a             * notification then unblock it now. */            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )            {                /* The task should not have been on an event list. */                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );                if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )                {                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                    prvAddTaskToReadyList( pxTCB );                }                else                {                    /* The delayed and ready lists cannot be accessed, so hold                     * this task pending until the scheduler is resumed. */                    vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );                }                if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )                {                    /* The notified task has a priority above the currently                     * executing task so a yield is required. */                    if( pxHigherPriorityTaskWoken != NULL )                    {                        *pxHigherPriorityTaskWoken = pdTRUE;                    }                    /* Mark that a yield is pending in case the user is not                     * using the "xHigherPriorityTaskWoken" parameter to an ISR                     * safe FreeRTOS function. */                    xYieldPending = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        }        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );        return xReturn;    }#endif /* configUSE_TASK_NOTIFICATIONS *//*-----------------------------------------------------------*/#if ( configUSE_TASK_NOTIFICATIONS == 1 )    void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,                                        UBaseType_t uxIndexToNotify,                                        BaseType_t * pxHigherPriorityTaskWoken )    {        TCB_t * pxTCB;        uint8_t ucOriginalNotifyState;        UBaseType_t uxSavedInterruptStatus;        configASSERT( xTaskToNotify );        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );        /* RTOS ports that support interrupt nesting have the concept of a         * maximum  system call (or maximum API call) interrupt priority.         * Interrupts that are  above the maximum system call priority are keep         * permanently enabled, even when the RTOS kernel is in a critical section,         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()         * is defined in FreeRTOSConfig.h then         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion         * failure if a FreeRTOS API function is called from an interrupt that has         * been assigned a priority above the configured maximum system call         * priority.  Only FreeRTOS functions that end in FromISR can be called         * from interrupts  that have been assigned a priority at or (logically)         * below the maximum system call interrupt priority.  FreeRTOS maintains a         * separate interrupt safe API to ensure interrupt entry is as fast and as         * simple as possible.  More information (albeit Cortex-M specific) is         * provided on the following link:         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();        pxTCB = xTaskToNotify;        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();        {            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;            /* 'Giving' is equivalent to incrementing a count in a counting             * semaphore. */            ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;            traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );            /* If the task is in the blocked state specifically to wait for a             * notification then unblock it now. */            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )            {                /* The task should not have been on an event list. */                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );                if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )                {                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );                    prvAddTaskToReadyList( pxTCB );                }                else                {                    /* The delayed and ready lists cannot be accessed, so hold                     * this task pending until the scheduler is resumed. */                    vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );                }                if( pxTCB->uxPriority > pxCurrentTCB->uxPriority )                {                    /* The notified task has a priority above the currently                     * executing task so a yield is required. */                    if( pxHigherPriorityTaskWoken != NULL )                    {                        *pxHigherPriorityTaskWoken = pdTRUE;                    }                    /* Mark that a yield is pending in case the user is not                     * using the "xHigherPriorityTaskWoken" parameter in an ISR                     * safe FreeRTOS function. */                    xYieldPending = pdTRUE;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }        }        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );    }#endif /* configUSE_TASK_NOTIFICATIONS *//*-----------------------------------------------------------*/#if ( configUSE_TASK_NOTIFICATIONS == 1 )    BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,                                             UBaseType_t uxIndexToClear )    {        TCB_t * pxTCB;        BaseType_t xReturn;        configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );        /* If null is passed in here then it is the calling task that is having         * its notification state cleared. */        pxTCB = prvGetTCBFromHandle( xTask );        taskENTER_CRITICAL();        {            if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )            {                pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;                xReturn = pdPASS;            }            else            {                xReturn = pdFAIL;            }        }        taskEXIT_CRITICAL();        return xReturn;    }#endif /* configUSE_TASK_NOTIFICATIONS *//*-----------------------------------------------------------*/#if ( configUSE_TASK_NOTIFICATIONS == 1 )    uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,                                            UBaseType_t uxIndexToClear,                                            uint32_t ulBitsToClear )    {        TCB_t * pxTCB;        uint32_t ulReturn;        /* If null is passed in here then it is the calling task that is having         * its notification state cleared. */        pxTCB = prvGetTCBFromHandle( xTask );        taskENTER_CRITICAL();        {            /* Return the notification as it was before the bits were cleared,             * then clear the bit mask. */            ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];            pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;        }        taskEXIT_CRITICAL();        return ulReturn;    }#endif /* configUSE_TASK_NOTIFICATIONS *//*-----------------------------------------------------------*/#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )    uint32_t ulTaskGetIdleRunTimeCounter( void )    {        return xIdleTaskHandle->ulRunTimeCounter;    }#endif/*-----------------------------------------------------------*/static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,                                            const BaseType_t xCanBlockIndefinitely ){    TickType_t xTimeToWake;    const TickType_t xConstTickCount = xTickCount;    #if ( INCLUDE_xTaskAbortDelay == 1 )        {            /* About to enter a delayed list, so ensure the ucDelayAborted flag is             * reset to pdFALSE so it can be detected as having been set to pdTRUE             * when the task leaves the Blocked state. */            pxCurrentTCB->ucDelayAborted = pdFALSE;        }    #endif    /* Remove the task from the ready list before adding it to the blocked list     * as the same list item is used for both lists. */    if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )    {        /* The current task must be in a ready list, so there is no need to         * check, and the port reset macro can be called directly. */        portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task.  pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */    }    else    {        mtCOVERAGE_TEST_MARKER();    }    #if ( INCLUDE_vTaskSuspend == 1 )        {            if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )            {                /* Add the task to the suspended task list instead of a delayed task                 * list to ensure it is not woken by a timing event.  It will block                 * indefinitely. */                vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );            }            else            {                /* Calculate the time at which the task should be woken if the event                 * does not occur.  This may overflow but this doesn't matter, the                 * kernel will manage it correctly. */                xTimeToWake = xConstTickCount + xTicksToWait;                /* The list item will be inserted in wake time order. */                listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );                if( xTimeToWake < xConstTickCount )                {                    /* Wake time has overflowed.  Place this item in the overflow                     * list. */                    vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );                }                else                {                    /* The wake time has not overflowed, so the current block list                     * is used. */                    vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );                    /* If the task entering the blocked state was placed at the                     * head of the list of blocked tasks then xNextTaskUnblockTime                     * needs to be updated too. */                    if( xTimeToWake < xNextTaskUnblockTime )                    {                        xNextTaskUnblockTime = xTimeToWake;                    }                    else                    {                        mtCOVERAGE_TEST_MARKER();                    }                }            }        }    #else /* INCLUDE_vTaskSuspend */        {            /* Calculate the time at which the task should be woken if the event             * does not occur.  This may overflow but this doesn't matter, the kernel             * will manage it correctly. */            xTimeToWake = xConstTickCount + xTicksToWait;            /* The list item will be inserted in wake time order. */            listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );            if( xTimeToWake < xConstTickCount )            {                /* Wake time has overflowed.  Place this item in the overflow list. */                vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );            }            else            {                /* The wake time has not overflowed, so the current block list is used. */                vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );                /* If the task entering the blocked state was placed at the head of the                 * list of blocked tasks then xNextTaskUnblockTime needs to be updated                 * too. */                if( xTimeToWake < xNextTaskUnblockTime )                {                    xNextTaskUnblockTime = xTimeToWake;                }                else                {                    mtCOVERAGE_TEST_MARKER();                }            }            /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */            ( void ) xCanBlockIndefinitely;        }    #endif /* INCLUDE_vTaskSuspend */}/* Code below here allows additional code to be inserted into this source file, * especially where access to file scope functions and data is needed (for example * when performing module tests). */#ifdef FREERTOS_MODULE_TEST    #include "tasks_test_access_functions.h"#endif#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )    #include "freertos_tasks_c_additions.h"    #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT        static void freertos_tasks_c_additions_init( void )        {            FREERTOS_TASKS_C_ADDITIONS_INIT();        }    #endif#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */
 |