fr_md5.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251
  1. #include "fr_md5.h"
  2. /* The below was retrieved from
  3. * http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/crypto/md5.c?rev=1.1
  4. * with the following changes:
  5. * #includes commented out.
  6. * Support context->count as uint32_t[2] instead of uint64_t
  7. * u_int* to uint*
  8. */
  9. /*
  10. * This code implements the MD5 message-digest algorithm.
  11. * The algorithm is due to Ron Rivest. This code was
  12. * written by Colin Plumb in 1993, no copyright is claimed.
  13. * This code is in the public domain; do with it what you wish.
  14. *
  15. * Equivalent code is available from RSA Data Security, Inc.
  16. * This code has been tested against that, and is equivalent,
  17. * except that you don't need to include two pages of legalese
  18. * with every copy.
  19. *
  20. * To compute the message digest of a chunk of bytes, declare an
  21. * MD5Context structure, pass it to MD5Init, call MD5Update as
  22. * needed on buffers full of bytes, and then call MD5Final, which
  23. * will fill a supplied 16-byte array with the digest.
  24. */
  25. /*#include <sys/param.h>*/
  26. /*#include <sys/systm.h>*/
  27. /*#include <crypto/md5.h>*/
  28. #define PUT_64BIT_LE(cp, value) do { \
  29. (cp)[7] = (value)[1] >> 24; \
  30. (cp)[6] = (value)[1] >> 16; \
  31. (cp)[5] = (value)[1] >> 8; \
  32. (cp)[4] = (value)[1]; \
  33. (cp)[3] = (value)[0] >> 24; \
  34. (cp)[2] = (value)[0] >> 16; \
  35. (cp)[1] = (value)[0] >> 8; \
  36. (cp)[0] = (value)[0]; } while (0)
  37. #define PUT_32BIT_LE(cp, value) do { \
  38. (cp)[3] = (value) >> 24; \
  39. (cp)[2] = (value) >> 16; \
  40. (cp)[1] = (value) >> 8; \
  41. (cp)[0] = (value); } while (0)
  42. static uint8_t PADDING[MD5_BLOCK_LENGTH] = {
  43. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  44. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  45. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  46. };
  47. /*
  48. * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
  49. * initialization constants.
  50. */
  51. void
  52. MD5Init(MD5_CTX *ctx)
  53. {
  54. ctx->count[0] = 0;
  55. ctx->count[1] = 0;
  56. ctx->state[0] = 0x67452301;
  57. ctx->state[1] = 0xefcdab89;
  58. ctx->state[2] = 0x98badcfe;
  59. ctx->state[3] = 0x10325476;
  60. }
  61. /*
  62. * Update context to reflect the concatenation of another buffer full
  63. * of bytes.
  64. */
  65. void
  66. MD5Update(MD5_CTX *ctx, uint8_t const *input, size_t len)
  67. {
  68. size_t have, need;
  69. /* Check how many bytes we already have and how many more we need. */
  70. have = (size_t)((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
  71. need = MD5_BLOCK_LENGTH - have;
  72. /* Update bitcount */
  73. /* ctx->count += (uint64_t)len << 3;*/
  74. if ((ctx->count[0] += ((uint32_t)len << 3)) < (uint32_t)len) {
  75. /* Overflowed ctx->count[0] */
  76. ctx->count[1]++;
  77. }
  78. ctx->count[1] += ((uint32_t)len >> 29);
  79. if (len >= need) {
  80. if (have != 0) {
  81. memcpy(ctx->buffer + have, input, need);
  82. MD5Transform(ctx->state, ctx->buffer);
  83. input += need;
  84. len -= need;
  85. have = 0;
  86. }
  87. /* Process data in MD5_BLOCK_LENGTH-byte chunks. */
  88. while (len >= MD5_BLOCK_LENGTH) {
  89. MD5Transform(ctx->state, input);
  90. input += MD5_BLOCK_LENGTH;
  91. len -= MD5_BLOCK_LENGTH;
  92. }
  93. }
  94. /* Handle any remaining bytes of data. */
  95. if (len != 0)
  96. memcpy(ctx->buffer + have, input, len);
  97. }
  98. /*
  99. * Final wrapup - pad to 64-byte boundary with the bit pattern
  100. * 1 0* (64-bit count of bits processed, MSB-first)
  101. */
  102. void
  103. MD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx)
  104. {
  105. uint8_t count[8];
  106. size_t padlen;
  107. int i;
  108. /* Convert count to 8 bytes in little endian order. */
  109. PUT_64BIT_LE(count, ctx->count);
  110. /* Pad out to 56 mod 64. */
  111. padlen = MD5_BLOCK_LENGTH -
  112. ((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));
  113. if (padlen < 1 + 8)
  114. padlen += MD5_BLOCK_LENGTH;
  115. MD5Update(ctx, PADDING, padlen - 8); /* padlen - 8 <= 64 */
  116. MD5Update(ctx, count, 8);
  117. if (digest != NULL) {
  118. for (i = 0; i < 4; i++)
  119. PUT_32BIT_LE(digest + i * 4, ctx->state[i]);
  120. }
  121. memset(ctx, 0, sizeof(*ctx)); /* in case it's sensitive */
  122. }
  123. /* The four core functions - F1 is optimized somewhat */
  124. /* #define F1(x, y, z) (x & y | ~x & z) */
  125. #define F1(x, y, z) (z ^ (x & (y ^ z)))
  126. #define F2(x, y, z) F1(z, x, y)
  127. #define F3(x, y, z) (x ^ y ^ z)
  128. #define F4(x, y, z) (y ^ (x | ~z))
  129. /* This is the central step in the MD5 algorithm. */
  130. #define MD5STEP(f, w, x, y, z, data, s) \
  131. ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
  132. /*
  133. * The core of the MD5 algorithm, this alters an existing MD5 hash to
  134. * reflect the addition of 16 longwords of new data. MD5Update blocks
  135. * the data and converts bytes into longwords for this routine.
  136. */
  137. void
  138. MD5Transform(uint32_t state[4], uint8_t const block[MD5_BLOCK_LENGTH])
  139. {
  140. uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];
  141. for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {
  142. in[a] = (uint32_t)(
  143. (uint32_t)(block[a * 4 + 0]) |
  144. (uint32_t)(block[a * 4 + 1]) << 8 |
  145. (uint32_t)(block[a * 4 + 2]) << 16 |
  146. (uint32_t)(block[a * 4 + 3]) << 24);
  147. }
  148. a = state[0];
  149. b = state[1];
  150. c = state[2];
  151. d = state[3];
  152. MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478, 7);
  153. MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);
  154. MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);
  155. MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);
  156. MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf, 7);
  157. MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);
  158. MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);
  159. MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);
  160. MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8, 7);
  161. MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);
  162. MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
  163. MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
  164. MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
  165. MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
  166. MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
  167. MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
  168. MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562, 5);
  169. MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340, 9);
  170. MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
  171. MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);
  172. MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d, 5);
  173. MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
  174. MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
  175. MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);
  176. MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6, 5);
  177. MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
  178. MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);
  179. MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);
  180. MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
  181. MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8, 9);
  182. MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);
  183. MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
  184. MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942, 4);
  185. MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);
  186. MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
  187. MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
  188. MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44, 4);
  189. MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);
  190. MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);
  191. MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
  192. MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
  193. MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);
  194. MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);
  195. MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);
  196. MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039, 4);
  197. MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
  198. MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
  199. MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);
  200. MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244, 6);
  201. MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);
  202. MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
  203. MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);
  204. MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
  205. MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);
  206. MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
  207. MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);
  208. MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f, 6);
  209. MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
  210. MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);
  211. MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
  212. MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82, 6);
  213. MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
  214. MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);
  215. MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);
  216. state[0] += a;
  217. state[1] += b;
  218. state[2] += c;
  219. state[3] += d;
  220. }