bignum.c 59 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458
  1. /*
  2. * Multi-precision integer library
  3. *
  4. * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. *
  19. * This file is part of mbed TLS (https://tls.mbed.org)
  20. */
  21. /*
  22. * The following sources were referenced in the design of this Multi-precision
  23. * Integer library:
  24. *
  25. * [1] Handbook of Applied Cryptography - 1997
  26. * Menezes, van Oorschot and Vanstone
  27. *
  28. * [2] Multi-Precision Math
  29. * Tom St Denis
  30. * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
  31. *
  32. * [3] GNU Multi-Precision Arithmetic Library
  33. * https://gmplib.org/manual/index.html
  34. *
  35. */
  36. #if !defined(MBEDTLS_CONFIG_FILE)
  37. #include "mbedtls/config.h"
  38. #else
  39. #include MBEDTLS_CONFIG_FILE
  40. #endif
  41. #if defined(MBEDTLS_BIGNUM_C)
  42. #include "mbedtls/bignum.h"
  43. #include "mbedtls/bn_mul.h"
  44. #include <string.h>
  45. #if defined(MBEDTLS_PLATFORM_C)
  46. #include "mbedtls/platform.h"
  47. #else
  48. #ifdef PRINTF_STDLIB
  49. #include <stdio.h>
  50. #endif
  51. #ifdef PRINTF_CUSTOM
  52. #include "tinystdio.h"
  53. #endif
  54. #include <stdlib.h>
  55. #define mbedtls_printf printf
  56. #define mbedtls_calloc calloc
  57. #define mbedtls_free free
  58. #endif
  59. /* Implementation that should never be optimized out by the compiler */
  60. static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n ) {
  61. volatile mbedtls_mpi_uint *p = v; while( n-- ) *p++ = 0;
  62. }
  63. #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
  64. #define biL (ciL << 3) /* bits in limb */
  65. #define biH (ciL << 2) /* half limb size */
  66. #define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
  67. /*
  68. * Convert between bits/chars and number of limbs
  69. * Divide first in order to avoid potential overflows
  70. */
  71. #define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
  72. #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
  73. /*
  74. * Initialize one MPI
  75. */
  76. void mbedtls_mpi_init( mbedtls_mpi *X )
  77. {
  78. if( X == NULL )
  79. return;
  80. X->s = 1;
  81. X->n = 0;
  82. X->p = NULL;
  83. }
  84. /*
  85. * Unallocate one MPI
  86. */
  87. void mbedtls_mpi_free( mbedtls_mpi *X )
  88. {
  89. if( X == NULL )
  90. return;
  91. if( X->p != NULL )
  92. {
  93. mbedtls_mpi_zeroize( X->p, X->n );
  94. mbedtls_free( X->p );
  95. }
  96. X->s = 1;
  97. X->n = 0;
  98. X->p = NULL;
  99. }
  100. /*
  101. * Enlarge to the specified number of limbs
  102. */
  103. int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
  104. {
  105. mbedtls_mpi_uint *p;
  106. if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
  107. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  108. if( X->n < nblimbs )
  109. {
  110. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
  111. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  112. if( X->p != NULL )
  113. {
  114. memcpy( p, X->p, X->n * ciL );
  115. mbedtls_mpi_zeroize( X->p, X->n );
  116. mbedtls_free( X->p );
  117. }
  118. X->n = nblimbs;
  119. X->p = p;
  120. }
  121. return( 0 );
  122. }
  123. /*
  124. * Resize down as much as possible,
  125. * while keeping at least the specified number of limbs
  126. */
  127. int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
  128. {
  129. mbedtls_mpi_uint *p;
  130. size_t i;
  131. /* Actually resize up in this case */
  132. if( X->n <= nblimbs )
  133. return( mbedtls_mpi_grow( X, nblimbs ) );
  134. for( i = X->n - 1; i > 0; i-- )
  135. if( X->p[i] != 0 )
  136. break;
  137. i++;
  138. if( i < nblimbs )
  139. i = nblimbs;
  140. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
  141. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  142. if( X->p != NULL )
  143. {
  144. memcpy( p, X->p, i * ciL );
  145. mbedtls_mpi_zeroize( X->p, X->n );
  146. mbedtls_free( X->p );
  147. }
  148. X->n = i;
  149. X->p = p;
  150. return( 0 );
  151. }
  152. /*
  153. * Copy the contents of Y into X
  154. */
  155. int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
  156. {
  157. int ret;
  158. size_t i;
  159. if( X == Y )
  160. return( 0 );
  161. if( Y->p == NULL )
  162. {
  163. mbedtls_mpi_free( X );
  164. return( 0 );
  165. }
  166. for( i = Y->n - 1; i > 0; i-- )
  167. if( Y->p[i] != 0 )
  168. break;
  169. i++;
  170. X->s = Y->s;
  171. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
  172. memset( X->p, 0, X->n * ciL );
  173. memcpy( X->p, Y->p, i * ciL );
  174. cleanup:
  175. return( ret );
  176. }
  177. /*
  178. * Swap the contents of X and Y
  179. */
  180. void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
  181. {
  182. mbedtls_mpi T;
  183. memcpy( &T, X, sizeof( mbedtls_mpi ) );
  184. memcpy( X, Y, sizeof( mbedtls_mpi ) );
  185. memcpy( Y, &T, sizeof( mbedtls_mpi ) );
  186. }
  187. /*
  188. * Conditionally assign X = Y, without leaking information
  189. * about whether the assignment was made or not.
  190. * (Leaking information about the respective sizes of X and Y is ok however.)
  191. */
  192. int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
  193. {
  194. int ret = 0;
  195. size_t i;
  196. /* make sure assign is 0 or 1 in a time-constant manner */
  197. assign = (assign | (unsigned char)-assign) >> 7;
  198. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  199. X->s = X->s * ( 1 - assign ) + Y->s * assign;
  200. for( i = 0; i < Y->n; i++ )
  201. X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign;
  202. for( ; i < X->n; i++ )
  203. X->p[i] *= ( 1 - assign );
  204. cleanup:
  205. return( ret );
  206. }
  207. /*
  208. * Conditionally swap X and Y, without leaking information
  209. * about whether the swap was made or not.
  210. * Here it is not ok to simply swap the pointers, which whould lead to
  211. * different memory access patterns when X and Y are used afterwards.
  212. */
  213. int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap )
  214. {
  215. int ret, s;
  216. size_t i;
  217. mbedtls_mpi_uint tmp;
  218. if( X == Y )
  219. return( 0 );
  220. /* make sure swap is 0 or 1 in a time-constant manner */
  221. swap = (swap | (unsigned char)-swap) >> 7;
  222. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  223. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
  224. s = X->s;
  225. X->s = X->s * ( 1 - swap ) + Y->s * swap;
  226. Y->s = Y->s * ( 1 - swap ) + s * swap;
  227. for( i = 0; i < X->n; i++ )
  228. {
  229. tmp = X->p[i];
  230. X->p[i] = X->p[i] * ( 1 - swap ) + Y->p[i] * swap;
  231. Y->p[i] = Y->p[i] * ( 1 - swap ) + tmp * swap;
  232. }
  233. cleanup:
  234. return( ret );
  235. }
  236. /*
  237. * Set value from integer
  238. */
  239. int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
  240. {
  241. int ret;
  242. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
  243. memset( X->p, 0, X->n * ciL );
  244. X->p[0] = ( z < 0 ) ? -z : z;
  245. X->s = ( z < 0 ) ? -1 : 1;
  246. cleanup:
  247. return( ret );
  248. }
  249. /*
  250. * Get a specific bit
  251. */
  252. int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
  253. {
  254. if( X->n * biL <= pos )
  255. return( 0 );
  256. return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
  257. }
  258. /*
  259. * Set a bit to a specific value of 0 or 1
  260. */
  261. int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
  262. {
  263. int ret = 0;
  264. size_t off = pos / biL;
  265. size_t idx = pos % biL;
  266. if( val != 0 && val != 1 )
  267. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  268. if( X->n * biL <= pos )
  269. {
  270. if( val == 0 )
  271. return( 0 );
  272. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
  273. }
  274. X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
  275. X->p[off] |= (mbedtls_mpi_uint) val << idx;
  276. cleanup:
  277. return( ret );
  278. }
  279. /*
  280. * Return the number of less significant zero-bits
  281. */
  282. size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
  283. {
  284. size_t i, j, count = 0;
  285. for( i = 0; i < X->n; i++ )
  286. for( j = 0; j < biL; j++, count++ )
  287. if( ( ( X->p[i] >> j ) & 1 ) != 0 )
  288. return( count );
  289. return( 0 );
  290. }
  291. /*
  292. * Count leading zero bits in a given integer
  293. */
  294. static size_t mbedtls_clz( const mbedtls_mpi_uint x )
  295. {
  296. size_t j;
  297. mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
  298. for( j = 0; j < biL; j++ )
  299. {
  300. if( x & mask ) break;
  301. mask >>= 1;
  302. }
  303. return j;
  304. }
  305. /*
  306. * Return the number of bits
  307. */
  308. size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
  309. {
  310. size_t i, j;
  311. if( X->n == 0 )
  312. return( 0 );
  313. for( i = X->n - 1; i > 0; i-- )
  314. if( X->p[i] != 0 )
  315. break;
  316. j = biL - mbedtls_clz( X->p[i] );
  317. return( ( i * biL ) + j );
  318. }
  319. /*
  320. * Return the total size in bytes
  321. */
  322. size_t mbedtls_mpi_size( const mbedtls_mpi *X )
  323. {
  324. return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
  325. }
  326. /*
  327. * Convert an ASCII character to digit value
  328. */
  329. static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
  330. {
  331. *d = 255;
  332. if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
  333. if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
  334. if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
  335. if( *d >= (mbedtls_mpi_uint) radix )
  336. return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
  337. return( 0 );
  338. }
  339. /*
  340. * Import from an ASCII string
  341. */
  342. int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
  343. {
  344. int ret;
  345. size_t i, j, slen, n;
  346. mbedtls_mpi_uint d;
  347. mbedtls_mpi T;
  348. if( radix < 2 || radix > 16 )
  349. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  350. mbedtls_mpi_init( &T );
  351. slen = strlen( s );
  352. if( radix == 16 )
  353. {
  354. if( slen > MPI_SIZE_T_MAX >> 2 )
  355. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  356. n = BITS_TO_LIMBS( slen << 2 );
  357. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
  358. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  359. for( i = slen, j = 0; i > 0; i--, j++ )
  360. {
  361. if( i == 1 && s[i - 1] == '-' )
  362. {
  363. X->s = -1;
  364. break;
  365. }
  366. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
  367. X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
  368. }
  369. }
  370. else
  371. {
  372. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  373. for( i = 0; i < slen; i++ )
  374. {
  375. if( i == 0 && s[i] == '-' )
  376. {
  377. X->s = -1;
  378. continue;
  379. }
  380. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
  381. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
  382. if( X->s == 1 )
  383. {
  384. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
  385. }
  386. else
  387. {
  388. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( X, &T, d ) );
  389. }
  390. }
  391. }
  392. cleanup:
  393. mbedtls_mpi_free( &T );
  394. return( ret );
  395. }
  396. /*
  397. * Helper to write the digits high-order first
  398. */
  399. static int mpi_write_hlp( mbedtls_mpi *X, int radix, char **p )
  400. {
  401. int ret;
  402. mbedtls_mpi_uint r;
  403. if( radix < 2 || radix > 16 )
  404. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  405. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
  406. MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
  407. if( mbedtls_mpi_cmp_int( X, 0 ) != 0 )
  408. MBEDTLS_MPI_CHK( mpi_write_hlp( X, radix, p ) );
  409. if( r < 10 )
  410. *(*p)++ = (char)( r + 0x30 );
  411. else
  412. *(*p)++ = (char)( r + 0x37 );
  413. cleanup:
  414. return( ret );
  415. }
  416. /*
  417. * Export into an ASCII string
  418. */
  419. int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
  420. char *buf, size_t buflen, size_t *olen )
  421. {
  422. int ret = 0;
  423. size_t n;
  424. char *p;
  425. mbedtls_mpi T;
  426. if( radix < 2 || radix > 16 )
  427. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  428. n = mbedtls_mpi_bitlen( X );
  429. if( radix >= 4 ) n >>= 1;
  430. if( radix >= 16 ) n >>= 1;
  431. /*
  432. * Round up the buffer length to an even value to ensure that there is
  433. * enough room for hexadecimal values that can be represented in an odd
  434. * number of digits.
  435. */
  436. n += 3 + ( ( n + 1 ) & 1 );
  437. if( buflen < n )
  438. {
  439. *olen = n;
  440. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  441. }
  442. p = buf;
  443. mbedtls_mpi_init( &T );
  444. if( X->s == -1 )
  445. *p++ = '-';
  446. if( radix == 16 )
  447. {
  448. int c;
  449. size_t i, j, k;
  450. for( i = X->n, k = 0; i > 0; i-- )
  451. {
  452. for( j = ciL; j > 0; j-- )
  453. {
  454. c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
  455. if( c == 0 && k == 0 && ( i + j ) != 2 )
  456. continue;
  457. *(p++) = "0123456789ABCDEF" [c / 16];
  458. *(p++) = "0123456789ABCDEF" [c % 16];
  459. k = 1;
  460. }
  461. }
  462. }
  463. else
  464. {
  465. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
  466. if( T.s == -1 )
  467. T.s = 1;
  468. MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p ) );
  469. }
  470. *p++ = '\0';
  471. *olen = p - buf;
  472. cleanup:
  473. mbedtls_mpi_free( &T );
  474. return( ret );
  475. }
  476. #if defined(MBEDTLS_FS_IO)
  477. /*
  478. * Read X from an opened file
  479. */
  480. int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
  481. {
  482. #if 0
  483. mbedtls_mpi_uint d;
  484. size_t slen;
  485. char *p;
  486. /*
  487. * Buffer should have space for (short) label and decimal formatted MPI,
  488. * newline characters and '\0'
  489. */
  490. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  491. memset( s, 0, sizeof( s ) );
  492. if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
  493. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  494. slen = strlen( s );
  495. if( slen == sizeof( s ) - 2 )
  496. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  497. if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
  498. if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
  499. p = s + slen;
  500. while( p-- > s )
  501. if( mpi_get_digit( &d, radix, *p ) != 0 )
  502. break;
  503. return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
  504. #endif
  505. }
  506. /*
  507. * Write X into an opened file (or stdout if fout == NULL)
  508. */
  509. int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
  510. {
  511. int ret;
  512. #if 0
  513. size_t n, slen, plen;
  514. /*
  515. * Buffer should have space for (short) label and decimal formatted MPI,
  516. * newline characters and '\0'
  517. */
  518. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  519. memset( s, 0, sizeof( s ) );
  520. MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
  521. if( p == NULL ) p = "";
  522. plen = strlen( p );
  523. slen = strlen( s );
  524. s[slen++] = '\r';
  525. s[slen++] = '\n';
  526. if( fout != NULL )
  527. {
  528. if( fwrite( p, 1, plen, fout ) != plen ||
  529. fwrite( s, 1, slen, fout ) != slen )
  530. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  531. }
  532. else
  533. mbedtls_printf( "%s%s", p, s );
  534. cleanup:
  535. #endif
  536. return( ret );
  537. }
  538. #endif /* MBEDTLS_FS_IO */
  539. /*
  540. * Import X from unsigned binary data, big endian
  541. */
  542. int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
  543. {
  544. int ret;
  545. #if 1
  546. size_t i, j, n;
  547. for( n = 0; n < buflen; n++ )
  548. if( buf[n] != 0 )
  549. break;
  550. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) );
  551. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  552. for( i = buflen, j = 0; i > n; i--, j++ )
  553. X->p[j / ciL] |= ((mbedtls_mpi_uint) buf[i - 1]) << ((j % ciL) << 3);
  554. cleanup:
  555. #endif
  556. return( ret );
  557. }
  558. /*
  559. * Export X into unsigned binary data, big endian
  560. */
  561. int mbedtls_mpi_write_binary( const mbedtls_mpi *X, unsigned char *buf, size_t buflen )
  562. {
  563. size_t i, j, n;
  564. n = mbedtls_mpi_size( X );
  565. if( buflen < n )
  566. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  567. memset( buf, 0, buflen );
  568. for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )
  569. buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );
  570. return( 0 );
  571. }
  572. /*
  573. * Left-shift: X <<= count
  574. */
  575. int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
  576. {
  577. int ret;
  578. size_t i, v0, t1;
  579. mbedtls_mpi_uint r0 = 0, r1;
  580. v0 = count / (biL );
  581. t1 = count & (biL - 1);
  582. i = mbedtls_mpi_bitlen( X ) + count;
  583. if( X->n * biL < i )
  584. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
  585. ret = 0;
  586. /*
  587. * shift by count / limb_size
  588. */
  589. if( v0 > 0 )
  590. {
  591. for( i = X->n; i > v0; i-- )
  592. X->p[i - 1] = X->p[i - v0 - 1];
  593. for( ; i > 0; i-- )
  594. X->p[i - 1] = 0;
  595. }
  596. /*
  597. * shift by count % limb_size
  598. */
  599. if( t1 > 0 )
  600. {
  601. for( i = v0; i < X->n; i++ )
  602. {
  603. r1 = X->p[i] >> (biL - t1);
  604. X->p[i] <<= t1;
  605. X->p[i] |= r0;
  606. r0 = r1;
  607. }
  608. }
  609. cleanup:
  610. return( ret );
  611. }
  612. /*
  613. * Right-shift: X >>= count
  614. */
  615. int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
  616. {
  617. size_t i, v0, v1;
  618. mbedtls_mpi_uint r0 = 0, r1;
  619. v0 = count / biL;
  620. v1 = count & (biL - 1);
  621. if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
  622. return mbedtls_mpi_lset( X, 0 );
  623. /*
  624. * shift by count / limb_size
  625. */
  626. if( v0 > 0 )
  627. {
  628. for( i = 0; i < X->n - v0; i++ )
  629. X->p[i] = X->p[i + v0];
  630. for( ; i < X->n; i++ )
  631. X->p[i] = 0;
  632. }
  633. /*
  634. * shift by count % limb_size
  635. */
  636. if( v1 > 0 )
  637. {
  638. for( i = X->n; i > 0; i-- )
  639. {
  640. r1 = X->p[i - 1] << (biL - v1);
  641. X->p[i - 1] >>= v1;
  642. X->p[i - 1] |= r0;
  643. r0 = r1;
  644. }
  645. }
  646. return( 0 );
  647. }
  648. /*
  649. * Compare unsigned values
  650. */
  651. int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  652. {
  653. size_t i, j;
  654. for( i = X->n; i > 0; i-- )
  655. if( X->p[i - 1] != 0 )
  656. break;
  657. for( j = Y->n; j > 0; j-- )
  658. if( Y->p[j - 1] != 0 )
  659. break;
  660. if( i == 0 && j == 0 )
  661. return( 0 );
  662. if( i > j ) return( 1 );
  663. if( j > i ) return( -1 );
  664. for( ; i > 0; i-- )
  665. {
  666. if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
  667. if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
  668. }
  669. return( 0 );
  670. }
  671. /*
  672. * Compare signed values
  673. */
  674. int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  675. {
  676. size_t i, j;
  677. for( i = X->n; i > 0; i-- )
  678. if( X->p[i - 1] != 0 )
  679. break;
  680. for( j = Y->n; j > 0; j-- )
  681. if( Y->p[j - 1] != 0 )
  682. break;
  683. if( i == 0 && j == 0 )
  684. return( 0 );
  685. if( i > j ) return( X->s );
  686. if( j > i ) return( -Y->s );
  687. if( X->s > 0 && Y->s < 0 ) return( 1 );
  688. if( Y->s > 0 && X->s < 0 ) return( -1 );
  689. for( ; i > 0; i-- )
  690. {
  691. if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
  692. if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
  693. }
  694. return( 0 );
  695. }
  696. /*
  697. * Compare signed values
  698. */
  699. int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
  700. {
  701. mbedtls_mpi Y;
  702. mbedtls_mpi_uint p[1];
  703. *p = ( z < 0 ) ? -z : z;
  704. Y.s = ( z < 0 ) ? -1 : 1;
  705. Y.n = 1;
  706. Y.p = p;
  707. return( mbedtls_mpi_cmp_mpi( X, &Y ) );
  708. }
  709. /*
  710. * Unsigned addition: X = |A| + |B| (HAC 14.7)
  711. */
  712. int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  713. {
  714. int ret;
  715. size_t i, j;
  716. mbedtls_mpi_uint *o, *p, c, tmp;
  717. if( X == B )
  718. {
  719. const mbedtls_mpi *T = A; A = X; B = T;
  720. }
  721. if( X != A )
  722. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  723. /*
  724. * X should always be positive as a result of unsigned additions.
  725. */
  726. X->s = 1;
  727. for( j = B->n; j > 0; j-- )
  728. if( B->p[j - 1] != 0 )
  729. break;
  730. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  731. o = B->p; p = X->p; c = 0;
  732. /*
  733. * tmp is used because it might happen that p == o
  734. */
  735. for( i = 0; i < j; i++, o++, p++ )
  736. {
  737. tmp= *o;
  738. *p += c; c = ( *p < c );
  739. *p += tmp; c += ( *p < tmp );
  740. }
  741. while( c != 0 )
  742. {
  743. if( i >= X->n )
  744. {
  745. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
  746. p = X->p + i;
  747. }
  748. *p += c; c = ( *p < c ); i++; p++;
  749. }
  750. cleanup:
  751. return( ret );
  752. }
  753. /*
  754. * Helper for mbedtls_mpi subtraction
  755. */
  756. static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d )
  757. {
  758. size_t i;
  759. mbedtls_mpi_uint c, z;
  760. for( i = c = 0; i < n; i++, s++, d++ )
  761. {
  762. z = ( *d < c ); *d -= c;
  763. c = ( *d < *s ) + z; *d -= *s;
  764. }
  765. while( c != 0 )
  766. {
  767. z = ( *d < c ); *d -= c;
  768. c = z; i++; d++;
  769. }
  770. }
  771. /*
  772. * Unsigned subtraction: X = |A| - |B| (HAC 14.9)
  773. */
  774. int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  775. {
  776. mbedtls_mpi TB;
  777. int ret;
  778. size_t n;
  779. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  780. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  781. mbedtls_mpi_init( &TB );
  782. if( X == B )
  783. {
  784. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  785. B = &TB;
  786. }
  787. if( X != A )
  788. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  789. /*
  790. * X should always be positive as a result of unsigned subtractions.
  791. */
  792. X->s = 1;
  793. ret = 0;
  794. for( n = B->n; n > 0; n-- )
  795. if( B->p[n - 1] != 0 )
  796. break;
  797. mpi_sub_hlp( n, B->p, X->p );
  798. cleanup:
  799. mbedtls_mpi_free( &TB );
  800. return( ret );
  801. }
  802. /*
  803. * Signed addition: X = A + B
  804. */
  805. int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  806. {
  807. int ret, s = A->s;
  808. if( A->s * B->s < 0 )
  809. {
  810. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  811. {
  812. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  813. X->s = s;
  814. }
  815. else
  816. {
  817. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  818. X->s = -s;
  819. }
  820. }
  821. else
  822. {
  823. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  824. X->s = s;
  825. }
  826. cleanup:
  827. return( ret );
  828. }
  829. /*
  830. * Signed subtraction: X = A - B
  831. */
  832. int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  833. {
  834. int ret, s = A->s;
  835. if( A->s * B->s > 0 )
  836. {
  837. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  838. {
  839. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  840. X->s = s;
  841. }
  842. else
  843. {
  844. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  845. X->s = -s;
  846. }
  847. }
  848. else
  849. {
  850. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  851. X->s = s;
  852. }
  853. cleanup:
  854. return( ret );
  855. }
  856. /*
  857. * Signed addition: X = A + b
  858. */
  859. int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  860. {
  861. mbedtls_mpi _B;
  862. mbedtls_mpi_uint p[1];
  863. p[0] = ( b < 0 ) ? -b : b;
  864. _B.s = ( b < 0 ) ? -1 : 1;
  865. _B.n = 1;
  866. _B.p = p;
  867. return( mbedtls_mpi_add_mpi( X, A, &_B ) );
  868. }
  869. /*
  870. * Signed subtraction: X = A - b
  871. */
  872. int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  873. {
  874. mbedtls_mpi _B;
  875. mbedtls_mpi_uint p[1];
  876. p[0] = ( b < 0 ) ? -b : b;
  877. _B.s = ( b < 0 ) ? -1 : 1;
  878. _B.n = 1;
  879. _B.p = p;
  880. return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
  881. }
  882. /*
  883. * Helper for mbedtls_mpi multiplication
  884. */
  885. static
  886. #if defined(__APPLE__) && defined(__arm__)
  887. /*
  888. * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
  889. * appears to need this to prevent bad ARM code generation at -O3.
  890. */
  891. __attribute__ ((noinline))
  892. #endif
  893. void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
  894. {
  895. mbedtls_mpi_uint c = 0, t = 0;
  896. #if defined(MULADDC_HUIT)
  897. for( ; i >= 8; i -= 8 )
  898. {
  899. MULADDC_INIT
  900. MULADDC_HUIT
  901. MULADDC_STOP
  902. }
  903. for( ; i > 0; i-- )
  904. {
  905. MULADDC_INIT
  906. MULADDC_CORE
  907. MULADDC_STOP
  908. }
  909. #else /* MULADDC_HUIT */
  910. for( ; i >= 16; i -= 16 )
  911. {
  912. MULADDC_INIT
  913. MULADDC_CORE MULADDC_CORE
  914. MULADDC_CORE MULADDC_CORE
  915. MULADDC_CORE MULADDC_CORE
  916. MULADDC_CORE MULADDC_CORE
  917. MULADDC_CORE MULADDC_CORE
  918. MULADDC_CORE MULADDC_CORE
  919. MULADDC_CORE MULADDC_CORE
  920. MULADDC_CORE MULADDC_CORE
  921. MULADDC_STOP
  922. }
  923. for( ; i >= 8; i -= 8 )
  924. {
  925. MULADDC_INIT
  926. MULADDC_CORE MULADDC_CORE
  927. MULADDC_CORE MULADDC_CORE
  928. MULADDC_CORE MULADDC_CORE
  929. MULADDC_CORE MULADDC_CORE
  930. MULADDC_STOP
  931. }
  932. for( ; i > 0; i-- )
  933. {
  934. MULADDC_INIT
  935. MULADDC_CORE
  936. MULADDC_STOP
  937. }
  938. #endif /* MULADDC_HUIT */
  939. t++;
  940. do {
  941. *d += c; c = ( *d < c ); d++;
  942. }
  943. while( c != 0 );
  944. }
  945. /*
  946. * Baseline multiplication: X = A * B (HAC 14.12)
  947. */
  948. int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  949. {
  950. int ret;
  951. size_t i, j;
  952. mbedtls_mpi TA, TB;
  953. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  954. if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
  955. if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
  956. for( i = A->n; i > 0; i-- )
  957. if( A->p[i - 1] != 0 )
  958. break;
  959. for( j = B->n; j > 0; j-- )
  960. if( B->p[j - 1] != 0 )
  961. break;
  962. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
  963. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  964. for( i++; j > 0; j-- )
  965. mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );
  966. X->s = A->s * B->s;
  967. cleanup:
  968. mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
  969. return( ret );
  970. }
  971. /*
  972. * Baseline multiplication: X = A * b
  973. */
  974. int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
  975. {
  976. mbedtls_mpi _B;
  977. mbedtls_mpi_uint p[1];
  978. _B.s = 1;
  979. _B.n = 1;
  980. _B.p = p;
  981. p[0] = b;
  982. return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
  983. }
  984. /*
  985. * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
  986. * mbedtls_mpi_uint divisor, d
  987. */
  988. static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
  989. mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
  990. {
  991. #if defined(MBEDTLS_HAVE_UDBL)
  992. mbedtls_t_udbl dividend, quotient;
  993. #else
  994. const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
  995. const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
  996. mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
  997. mbedtls_mpi_uint u0_msw, u0_lsw;
  998. size_t s;
  999. #endif
  1000. /*
  1001. * Check for overflow
  1002. */
  1003. if( 0 == d || u1 >= d )
  1004. {
  1005. if (r != NULL) *r = ~0;
  1006. return ( ~0 );
  1007. }
  1008. #if defined(MBEDTLS_HAVE_UDBL)
  1009. dividend = (mbedtls_t_udbl) u1 << biL;
  1010. dividend |= (mbedtls_t_udbl) u0;
  1011. quotient = dividend / d;
  1012. if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
  1013. quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
  1014. if( r != NULL )
  1015. *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
  1016. return (mbedtls_mpi_uint) quotient;
  1017. #else
  1018. /*
  1019. * Algorithm D, Section 4.3.1 - The Art of Computer Programming
  1020. * Vol. 2 - Seminumerical Algorithms, Knuth
  1021. */
  1022. /*
  1023. * Normalize the divisor, d, and dividend, u0, u1
  1024. */
  1025. s = mbedtls_clz( d );
  1026. d = d << s;
  1027. u1 = u1 << s;
  1028. u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
  1029. u0 = u0 << s;
  1030. d1 = d >> biH;
  1031. d0 = d & uint_halfword_mask;
  1032. u0_msw = u0 >> biH;
  1033. u0_lsw = u0 & uint_halfword_mask;
  1034. /*
  1035. * Find the first quotient and remainder
  1036. */
  1037. q1 = u1 / d1;
  1038. r0 = u1 - d1 * q1;
  1039. while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
  1040. {
  1041. q1 -= 1;
  1042. r0 += d1;
  1043. if ( r0 >= radix ) break;
  1044. }
  1045. rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
  1046. q0 = rAX / d1;
  1047. r0 = rAX - q0 * d1;
  1048. while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
  1049. {
  1050. q0 -= 1;
  1051. r0 += d1;
  1052. if ( r0 >= radix ) break;
  1053. }
  1054. if (r != NULL)
  1055. *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
  1056. quotient = q1 * radix + q0;
  1057. return quotient;
  1058. #endif
  1059. }
  1060. /*
  1061. * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
  1062. */
  1063. int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1064. {
  1065. int ret;
  1066. size_t i, n, t, k;
  1067. mbedtls_mpi X, Y, Z, T1, T2;
  1068. if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
  1069. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1070. mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
  1071. mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );
  1072. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  1073. {
  1074. if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
  1075. if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
  1076. return( 0 );
  1077. }
  1078. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
  1079. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
  1080. X.s = Y.s = 1;
  1081. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
  1082. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
  1083. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, 2 ) );
  1084. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T2, 3 ) );
  1085. k = mbedtls_mpi_bitlen( &Y ) % biL;
  1086. if( k < biL - 1 )
  1087. {
  1088. k = biL - 1 - k;
  1089. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
  1090. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
  1091. }
  1092. else k = 0;
  1093. n = X.n - 1;
  1094. t = Y.n - 1;
  1095. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
  1096. while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
  1097. {
  1098. Z.p[n - t]++;
  1099. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
  1100. }
  1101. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
  1102. for( i = n; i > t ; i-- )
  1103. {
  1104. if( X.p[i] >= Y.p[t] )
  1105. Z.p[i - t - 1] = ~0;
  1106. else
  1107. {
  1108. Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
  1109. Y.p[t], NULL);
  1110. }
  1111. Z.p[i - t - 1]++;
  1112. do
  1113. {
  1114. Z.p[i - t - 1]--;
  1115. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
  1116. T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
  1117. T1.p[1] = Y.p[t];
  1118. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
  1119. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T2, 0 ) );
  1120. T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
  1121. T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
  1122. T2.p[2] = X.p[i];
  1123. }
  1124. while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
  1125. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
  1126. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1127. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
  1128. if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
  1129. {
  1130. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
  1131. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1132. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
  1133. Z.p[i - t - 1]--;
  1134. }
  1135. }
  1136. if( Q != NULL )
  1137. {
  1138. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
  1139. Q->s = A->s * B->s;
  1140. }
  1141. if( R != NULL )
  1142. {
  1143. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
  1144. X.s = A->s;
  1145. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
  1146. if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
  1147. R->s = 1;
  1148. }
  1149. cleanup:
  1150. mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
  1151. mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );
  1152. return( ret );
  1153. }
  1154. /*
  1155. * Division by int: A = Q * b + R
  1156. */
  1157. int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1158. {
  1159. mbedtls_mpi _B;
  1160. mbedtls_mpi_uint p[1];
  1161. p[0] = ( b < 0 ) ? -b : b;
  1162. _B.s = ( b < 0 ) ? -1 : 1;
  1163. _B.n = 1;
  1164. _B.p = p;
  1165. return( mbedtls_mpi_div_mpi( Q, R, A, &_B ) );
  1166. }
  1167. /*
  1168. * Modulo: R = A mod B
  1169. */
  1170. int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1171. {
  1172. int ret;
  1173. if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
  1174. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1175. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
  1176. while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
  1177. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
  1178. while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
  1179. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
  1180. cleanup:
  1181. return( ret );
  1182. }
  1183. /*
  1184. * Modulo: r = A mod b
  1185. */
  1186. int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1187. {
  1188. size_t i;
  1189. mbedtls_mpi_uint x, y, z;
  1190. if( b == 0 )
  1191. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1192. if( b < 0 )
  1193. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1194. /*
  1195. * handle trivial cases
  1196. */
  1197. if( b == 1 )
  1198. {
  1199. *r = 0;
  1200. return( 0 );
  1201. }
  1202. if( b == 2 )
  1203. {
  1204. *r = A->p[0] & 1;
  1205. return( 0 );
  1206. }
  1207. /*
  1208. * general case
  1209. */
  1210. for( i = A->n, y = 0; i > 0; i-- )
  1211. {
  1212. x = A->p[i - 1];
  1213. y = ( y << biH ) | ( x >> biH );
  1214. z = y / b;
  1215. y -= z * b;
  1216. x <<= biH;
  1217. y = ( y << biH ) | ( x >> biH );
  1218. z = y / b;
  1219. y -= z * b;
  1220. }
  1221. /*
  1222. * If A is negative, then the current y represents a negative value.
  1223. * Flipping it to the positive side.
  1224. */
  1225. if( A->s < 0 && y != 0 )
  1226. y = b - y;
  1227. *r = y;
  1228. return( 0 );
  1229. }
  1230. /*
  1231. * Fast Montgomery initialization (thanks to Tom St Denis)
  1232. */
  1233. static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
  1234. {
  1235. mbedtls_mpi_uint x, m0 = N->p[0];
  1236. unsigned int i;
  1237. x = m0;
  1238. x += ( ( m0 + 2 ) & 4 ) << 1;
  1239. for( i = biL; i >= 8; i /= 2 )
  1240. x *= ( 2 - ( m0 * x ) );
  1241. *mm = ~x + 1;
  1242. }
  1243. /*
  1244. * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
  1245. */
  1246. static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
  1247. const mbedtls_mpi *T )
  1248. {
  1249. size_t i, n, m;
  1250. mbedtls_mpi_uint u0, u1, *d;
  1251. if( T->n < N->n + 1 || T->p == NULL )
  1252. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1253. memset( T->p, 0, T->n * ciL );
  1254. d = T->p;
  1255. n = N->n;
  1256. m = ( B->n < n ) ? B->n : n;
  1257. for( i = 0; i < n; i++ )
  1258. {
  1259. /*
  1260. * T = (T + u0*B + u1*N) / 2^biL
  1261. */
  1262. u0 = A->p[i];
  1263. u1 = ( d[0] + u0 * B->p[0] ) * mm;
  1264. mpi_mul_hlp( m, B->p, d, u0 );
  1265. mpi_mul_hlp( n, N->p, d, u1 );
  1266. *d++ = u0; d[n + 1] = 0;
  1267. }
  1268. memcpy( A->p, d, ( n + 1 ) * ciL );
  1269. if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
  1270. mpi_sub_hlp( n, N->p, A->p );
  1271. else
  1272. /* prevent timing attacks */
  1273. mpi_sub_hlp( n, A->p, T->p );
  1274. return( 0 );
  1275. }
  1276. /*
  1277. * Montgomery reduction: A = A * R^-1 mod N
  1278. */
  1279. static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T )
  1280. {
  1281. mbedtls_mpi_uint z = 1;
  1282. mbedtls_mpi U;
  1283. U.n = U.s = (int) z;
  1284. U.p = &z;
  1285. return( mpi_montmul( A, &U, N, mm, T ) );
  1286. }
  1287. /*
  1288. * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
  1289. */
  1290. int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const mbedtls_mpi *N, mbedtls_mpi *_RR )
  1291. {
  1292. int ret;
  1293. size_t wbits, wsize, one = 1;
  1294. size_t i, j, nblimbs;
  1295. size_t bufsize, nbits;
  1296. mbedtls_mpi_uint ei, mm, state;
  1297. mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;
  1298. int neg;
  1299. if( mbedtls_mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
  1300. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1301. if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
  1302. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1303. /*
  1304. * Init temps and window size
  1305. */
  1306. mpi_montg_init( &mm, N );
  1307. mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
  1308. mbedtls_mpi_init( &Apos );
  1309. memset( W, 0, sizeof( W ) );
  1310. i = mbedtls_mpi_bitlen( E );
  1311. wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
  1312. ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
  1313. if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
  1314. wsize = MBEDTLS_MPI_WINDOW_SIZE;
  1315. j = N->n + 1;
  1316. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  1317. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
  1318. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
  1319. /*
  1320. * Compensate for negative A (and correct at the end)
  1321. */
  1322. neg = ( A->s == -1 );
  1323. if( neg )
  1324. {
  1325. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
  1326. Apos.s = 1;
  1327. A = &Apos;
  1328. }
  1329. /*
  1330. * If 1st call, pre-compute R^2 mod N
  1331. */
  1332. if( _RR == NULL || _RR->p == NULL )
  1333. {
  1334. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
  1335. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
  1336. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
  1337. if( _RR != NULL )
  1338. memcpy( _RR, &RR, sizeof( mbedtls_mpi ) );
  1339. }
  1340. else
  1341. memcpy( &RR, _RR, sizeof( mbedtls_mpi ) );
  1342. /*
  1343. * W[1] = A * R^2 * R^-1 mod N = A * R mod N
  1344. */
  1345. if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
  1346. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
  1347. else
  1348. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
  1349. MBEDTLS_MPI_CHK( mpi_montmul( &W[1], &RR, N, mm, &T ) );
  1350. /*
  1351. * X = R^2 * R^-1 mod N = R mod N
  1352. */
  1353. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
  1354. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1355. if( wsize > 1 )
  1356. {
  1357. /*
  1358. * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
  1359. */
  1360. j = one << ( wsize - 1 );
  1361. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
  1362. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
  1363. for( i = 0; i < wsize - 1; i++ )
  1364. MBEDTLS_MPI_CHK( mpi_montmul( &W[j], &W[j], N, mm, &T ) );
  1365. /*
  1366. * W[i] = W[i - 1] * W[1]
  1367. */
  1368. for( i = j + 1; i < ( one << wsize ); i++ )
  1369. {
  1370. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
  1371. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
  1372. MBEDTLS_MPI_CHK( mpi_montmul( &W[i], &W[1], N, mm, &T ) );
  1373. }
  1374. }
  1375. nblimbs = E->n;
  1376. bufsize = 0;
  1377. nbits = 0;
  1378. wbits = 0;
  1379. state = 0;
  1380. while( 1 )
  1381. {
  1382. if( bufsize == 0 )
  1383. {
  1384. if( nblimbs == 0 )
  1385. break;
  1386. nblimbs--;
  1387. bufsize = sizeof( mbedtls_mpi_uint ) << 3;
  1388. }
  1389. bufsize--;
  1390. ei = (E->p[nblimbs] >> bufsize) & 1;
  1391. /*
  1392. * skip leading 0s
  1393. */
  1394. if( ei == 0 && state == 0 )
  1395. continue;
  1396. if( ei == 0 && state == 1 )
  1397. {
  1398. /*
  1399. * out of window, square X
  1400. */
  1401. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1402. continue;
  1403. }
  1404. /*
  1405. * add ei to current window
  1406. */
  1407. state = 2;
  1408. nbits++;
  1409. wbits |= ( ei << ( wsize - nbits ) );
  1410. if( nbits == wsize )
  1411. {
  1412. /*
  1413. * X = X^wsize R^-1 mod N
  1414. */
  1415. for( i = 0; i < wsize; i++ )
  1416. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1417. /*
  1418. * X = X * W[wbits] R^-1 mod N
  1419. */
  1420. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[wbits], N, mm, &T ) );
  1421. state--;
  1422. nbits = 0;
  1423. wbits = 0;
  1424. }
  1425. }
  1426. /*
  1427. * process the remaining bits
  1428. */
  1429. for( i = 0; i < nbits; i++ )
  1430. {
  1431. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1432. wbits <<= 1;
  1433. if( ( wbits & ( one << wsize ) ) != 0 )
  1434. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[1], N, mm, &T ) );
  1435. }
  1436. /*
  1437. * X = A^E * R * R^-1 mod N = A^E mod N
  1438. */
  1439. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1440. if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )
  1441. {
  1442. X->s = -1;
  1443. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
  1444. }
  1445. cleanup:
  1446. for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
  1447. mbedtls_mpi_free( &W[i] );
  1448. mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
  1449. if( _RR == NULL || _RR->p == NULL )
  1450. mbedtls_mpi_free( &RR );
  1451. return( ret );
  1452. }
  1453. /*
  1454. * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
  1455. */
  1456. int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1457. {
  1458. int ret;
  1459. size_t lz, lzt;
  1460. mbedtls_mpi TG, TA, TB;
  1461. mbedtls_mpi_init( &TG ); mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  1462. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
  1463. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  1464. lz = mbedtls_mpi_lsb( &TA );
  1465. lzt = mbedtls_mpi_lsb( &TB );
  1466. if( lzt < lz )
  1467. lz = lzt;
  1468. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, lz ) );
  1469. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, lz ) );
  1470. TA.s = TB.s = 1;
  1471. while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
  1472. {
  1473. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
  1474. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
  1475. if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
  1476. {
  1477. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
  1478. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
  1479. }
  1480. else
  1481. {
  1482. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
  1483. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
  1484. }
  1485. }
  1486. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
  1487. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
  1488. cleanup:
  1489. mbedtls_mpi_free( &TG ); mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
  1490. return( ret );
  1491. }
  1492. /*
  1493. * Fill X with size bytes of random.
  1494. *
  1495. * Use a temporary bytes representation to make sure the result is the same
  1496. * regardless of the platform endianness (useful when f_rng is actually
  1497. * deterministic, eg for tests).
  1498. */
  1499. int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
  1500. int (*f_rng)(void *, unsigned char *, size_t),
  1501. void *p_rng )
  1502. {
  1503. int ret;
  1504. unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
  1505. if( size > MBEDTLS_MPI_MAX_SIZE )
  1506. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1507. MBEDTLS_MPI_CHK( f_rng( p_rng, buf, size ) );
  1508. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( X, buf, size ) );
  1509. cleanup:
  1510. return( ret );
  1511. }
  1512. /*
  1513. * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
  1514. */
  1515. int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
  1516. {
  1517. int ret;
  1518. mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
  1519. if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )
  1520. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1521. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
  1522. mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
  1523. mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
  1524. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
  1525. if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
  1526. {
  1527. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1528. goto cleanup;
  1529. }
  1530. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
  1531. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
  1532. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
  1533. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
  1534. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
  1535. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
  1536. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
  1537. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
  1538. do
  1539. {
  1540. while( ( TU.p[0] & 1 ) == 0 )
  1541. {
  1542. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
  1543. if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
  1544. {
  1545. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
  1546. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
  1547. }
  1548. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
  1549. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
  1550. }
  1551. while( ( TV.p[0] & 1 ) == 0 )
  1552. {
  1553. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
  1554. if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
  1555. {
  1556. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
  1557. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
  1558. }
  1559. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
  1560. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
  1561. }
  1562. if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
  1563. {
  1564. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
  1565. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
  1566. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
  1567. }
  1568. else
  1569. {
  1570. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
  1571. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
  1572. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
  1573. }
  1574. }
  1575. while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
  1576. while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
  1577. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
  1578. while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
  1579. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
  1580. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
  1581. cleanup:
  1582. mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
  1583. mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
  1584. mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
  1585. return( ret );
  1586. }
  1587. #if defined(MBEDTLS_GENPRIME)
  1588. static const int small_prime[] =
  1589. {
  1590. 3, 5, 7, 11, 13, 17, 19, 23,
  1591. 29, 31, 37, 41, 43, 47, 53, 59,
  1592. 61, 67, 71, 73, 79, 83, 89, 97,
  1593. 101, 103, 107, 109, 113, 127, 131, 137,
  1594. 139, 149, 151, 157, 163, 167, 173, 179,
  1595. 181, 191, 193, 197, 199, 211, 223, 227,
  1596. 229, 233, 239, 241, 251, 257, 263, 269,
  1597. 271, 277, 281, 283, 293, 307, 311, 313,
  1598. 317, 331, 337, 347, 349, 353, 359, 367,
  1599. 373, 379, 383, 389, 397, 401, 409, 419,
  1600. 421, 431, 433, 439, 443, 449, 457, 461,
  1601. 463, 467, 479, 487, 491, 499, 503, 509,
  1602. 521, 523, 541, 547, 557, 563, 569, 571,
  1603. 577, 587, 593, 599, 601, 607, 613, 617,
  1604. 619, 631, 641, 643, 647, 653, 659, 661,
  1605. 673, 677, 683, 691, 701, 709, 719, 727,
  1606. 733, 739, 743, 751, 757, 761, 769, 773,
  1607. 787, 797, 809, 811, 821, 823, 827, 829,
  1608. 839, 853, 857, 859, 863, 877, 881, 883,
  1609. 887, 907, 911, 919, 929, 937, 941, 947,
  1610. 953, 967, 971, 977, 983, 991, 997, -103
  1611. };
  1612. /*
  1613. * Small divisors test (X must be positive)
  1614. *
  1615. * Return values:
  1616. * 0: no small factor (possible prime, more tests needed)
  1617. * 1: certain prime
  1618. * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
  1619. * other negative: error
  1620. */
  1621. static int mpi_check_small_factors( const mbedtls_mpi *X )
  1622. {
  1623. int ret = 0;
  1624. size_t i;
  1625. mbedtls_mpi_uint r;
  1626. if( ( X->p[0] & 1 ) == 0 )
  1627. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1628. for( i = 0; small_prime[i] > 0; i++ )
  1629. {
  1630. if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
  1631. return( 1 );
  1632. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
  1633. if( r == 0 )
  1634. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1635. }
  1636. cleanup:
  1637. return( ret );
  1638. }
  1639. /*
  1640. * Miller-Rabin pseudo-primality test (HAC 4.24)
  1641. */
  1642. static int mpi_miller_rabin( const mbedtls_mpi *X,
  1643. int (*f_rng)(void *, unsigned char *, size_t),
  1644. void *p_rng )
  1645. {
  1646. int ret, count;
  1647. size_t i, j, k, n, s;
  1648. mbedtls_mpi W, R, T, A, RR;
  1649. mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
  1650. mbedtls_mpi_init( &RR );
  1651. /*
  1652. * W = |X| - 1
  1653. * R = W >> lsb( W )
  1654. */
  1655. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
  1656. s = mbedtls_mpi_lsb( &W );
  1657. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
  1658. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
  1659. i = mbedtls_mpi_bitlen( X );
  1660. /*
  1661. * HAC, table 4.4
  1662. */
  1663. n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
  1664. ( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
  1665. ( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
  1666. for( i = 0; i < n; i++ )
  1667. {
  1668. /*
  1669. * pick a random A, 1 < A < |X| - 1
  1670. */
  1671. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1672. if( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 )
  1673. {
  1674. j = mbedtls_mpi_bitlen( &A ) - mbedtls_mpi_bitlen( &W );
  1675. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j + 1 ) );
  1676. }
  1677. A.p[0] |= 3;
  1678. count = 0;
  1679. do {
  1680. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1681. j = mbedtls_mpi_bitlen( &A );
  1682. k = mbedtls_mpi_bitlen( &W );
  1683. if (j > k) {
  1684. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j - k ) );
  1685. }
  1686. if (count++ > 30) {
  1687. return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1688. }
  1689. } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
  1690. mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
  1691. /*
  1692. * A = A^R mod |X|
  1693. */
  1694. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
  1695. if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
  1696. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1697. continue;
  1698. j = 1;
  1699. while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
  1700. {
  1701. /*
  1702. * A = A * A mod |X|
  1703. */
  1704. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
  1705. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
  1706. if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1707. break;
  1708. j++;
  1709. }
  1710. /*
  1711. * not prime if A != |X| - 1 or A == 1
  1712. */
  1713. if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
  1714. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1715. {
  1716. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1717. break;
  1718. }
  1719. }
  1720. cleanup:
  1721. mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
  1722. mbedtls_mpi_free( &RR );
  1723. return( ret );
  1724. }
  1725. /*
  1726. * Pseudo-primality test: small factors, then Miller-Rabin
  1727. */
  1728. int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
  1729. int (*f_rng)(void *, unsigned char *, size_t),
  1730. void *p_rng )
  1731. {
  1732. int ret;
  1733. mbedtls_mpi XX;
  1734. XX.s = 1;
  1735. XX.n = X->n;
  1736. XX.p = X->p;
  1737. if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
  1738. mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
  1739. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1740. if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
  1741. return( 0 );
  1742. if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
  1743. {
  1744. if( ret == 1 )
  1745. return( 0 );
  1746. return( ret );
  1747. }
  1748. return( mpi_miller_rabin( &XX, f_rng, p_rng ) );
  1749. }
  1750. /*
  1751. * Prime number generation
  1752. */
  1753. int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
  1754. int (*f_rng)(void *, unsigned char *, size_t),
  1755. void *p_rng )
  1756. {
  1757. int ret;
  1758. size_t k, n;
  1759. mbedtls_mpi_uint r;
  1760. mbedtls_mpi Y;
  1761. if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
  1762. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1763. mbedtls_mpi_init( &Y );
  1764. n = BITS_TO_LIMBS( nbits );
  1765. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
  1766. k = mbedtls_mpi_bitlen( X );
  1767. if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits + 1 ) );
  1768. mbedtls_mpi_set_bit( X, nbits-1, 1 );
  1769. X->p[0] |= 1;
  1770. if( dh_flag == 0 )
  1771. {
  1772. while( ( ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ) ) != 0 )
  1773. {
  1774. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1775. goto cleanup;
  1776. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 2 ) );
  1777. }
  1778. }
  1779. else
  1780. {
  1781. /*
  1782. * An necessary condition for Y and X = 2Y + 1 to be prime
  1783. * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
  1784. * Make sure it is satisfied, while keeping X = 3 mod 4
  1785. */
  1786. X->p[0] |= 2;
  1787. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
  1788. if( r == 0 )
  1789. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
  1790. else if( r == 1 )
  1791. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
  1792. /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
  1793. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
  1794. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
  1795. while( 1 )
  1796. {
  1797. /*
  1798. * First, check small factors for X and Y
  1799. * before doing Miller-Rabin on any of them
  1800. */
  1801. if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
  1802. ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
  1803. ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
  1804. ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
  1805. {
  1806. break;
  1807. }
  1808. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1809. goto cleanup;
  1810. /*
  1811. * Next candidates. We want to preserve Y = (X-1) / 2 and
  1812. * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
  1813. * so up Y by 6 and X by 12.
  1814. */
  1815. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
  1816. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
  1817. }
  1818. }
  1819. cleanup:
  1820. mbedtls_mpi_free( &Y );
  1821. return( ret );
  1822. }
  1823. #endif /* MBEDTLS_GENPRIME */
  1824. #if defined(MBEDTLS_SELF_TEST)
  1825. #define GCD_PAIR_COUNT 3
  1826. static const int gcd_pairs[GCD_PAIR_COUNT][3] =
  1827. {
  1828. { 693, 609, 21 },
  1829. { 1764, 868, 28 },
  1830. { 768454923, 542167814, 1 }
  1831. };
  1832. /*
  1833. * Checkup routine
  1834. */
  1835. int mbedtls_mpi_self_test( int verbose )
  1836. {
  1837. int ret, i;
  1838. mbedtls_mpi A, E, N, X, Y, U, V;
  1839. mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
  1840. mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
  1841. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
  1842. "EFE021C2645FD1DC586E69184AF4A31E" \
  1843. "D5F53E93B5F123FA41680867BA110131" \
  1844. "944FE7952E2517337780CB0DB80E61AA" \
  1845. "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
  1846. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
  1847. "B2E7EFD37075B9F03FF989C7C5051C20" \
  1848. "34D2A323810251127E7BF8625A4F49A5" \
  1849. "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
  1850. "5B5C25763222FEFCCFC38B832366C29E" ) );
  1851. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
  1852. "0066A198186C18C10B2F5ED9B522752A" \
  1853. "9830B69916E535C8F047518A889A43A5" \
  1854. "94B6BED27A168D31D4A52F88925AA8F5" ) );
  1855. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
  1856. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1857. "602AB7ECA597A3D6B56FF9829A5E8B85" \
  1858. "9E857EA95A03512E2BAE7391688D264A" \
  1859. "A5663B0341DB9CCFD2C4C5F421FEC814" \
  1860. "8001B72E848A38CAE1C65F78E56ABDEF" \
  1861. "E12D3C039B8A02D6BE593F0BBBDA56F1" \
  1862. "ECF677152EF804370C1A305CAF3B5BF1" \
  1863. "30879B56C61DE584A0F53A2447A51E" ) );
  1864. if( verbose != 0 )
  1865. mbedtls_printf( " MPI test #1 (mul_mpi): " );
  1866. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1867. {
  1868. if( verbose != 0 )
  1869. mbedtls_printf( "failed\n" );
  1870. ret = 1;
  1871. goto cleanup;
  1872. }
  1873. if( verbose != 0 )
  1874. mbedtls_printf( "passed\n" );
  1875. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
  1876. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1877. "256567336059E52CAE22925474705F39A94" ) );
  1878. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
  1879. "6613F26162223DF488E9CD48CC132C7A" \
  1880. "0AC93C701B001B092E4E5B9F73BCD27B" \
  1881. "9EE50D0657C77F374E903CDFA4C642" ) );
  1882. if( verbose != 0 )
  1883. mbedtls_printf( " MPI test #2 (div_mpi): " );
  1884. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
  1885. mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
  1886. {
  1887. if( verbose != 0 )
  1888. mbedtls_printf( "failed\n" );
  1889. ret = 1;
  1890. goto cleanup;
  1891. }
  1892. if( verbose != 0 )
  1893. mbedtls_printf( "passed\n" );
  1894. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
  1895. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1896. "36E139AEA55215609D2816998ED020BB" \
  1897. "BD96C37890F65171D948E9BC7CBAA4D9" \
  1898. "325D24D6A3C12710F10A09FA08AB87" ) );
  1899. if( verbose != 0 )
  1900. mbedtls_printf( " MPI test #3 (exp_mod): " );
  1901. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1902. {
  1903. if( verbose != 0 )
  1904. mbedtls_printf( "failed\n" );
  1905. ret = 1;
  1906. goto cleanup;
  1907. }
  1908. if( verbose != 0 )
  1909. mbedtls_printf( "passed\n" );
  1910. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
  1911. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1912. "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
  1913. "C3DBA76456363A10869622EAC2DD84EC" \
  1914. "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
  1915. if( verbose != 0 )
  1916. mbedtls_printf( " MPI test #4 (inv_mod): " );
  1917. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1918. {
  1919. if( verbose != 0 )
  1920. mbedtls_printf( "failed\n" );
  1921. ret = 1;
  1922. goto cleanup;
  1923. }
  1924. if( verbose != 0 )
  1925. mbedtls_printf( "passed\n" );
  1926. if( verbose != 0 )
  1927. mbedtls_printf( " MPI test #5 (simple gcd): " );
  1928. for( i = 0; i < GCD_PAIR_COUNT; i++ )
  1929. {
  1930. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
  1931. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
  1932. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
  1933. if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
  1934. {
  1935. if( verbose != 0 )
  1936. mbedtls_printf( "failed at %d\n", i );
  1937. ret = 1;
  1938. goto cleanup;
  1939. }
  1940. }
  1941. if( verbose != 0 )
  1942. mbedtls_printf( "passed\n" );
  1943. cleanup:
  1944. if( ret != 0 && verbose != 0 )
  1945. mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
  1946. mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
  1947. mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
  1948. if( verbose != 0 )
  1949. mbedtls_printf( "\n" );
  1950. return( ret );
  1951. }
  1952. #endif /* MBEDTLS_SELF_TEST */
  1953. #endif /* MBEDTLS_BIGNUM_C */