| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206 | /* *  The RSA public-key cryptosystem * *  Copyright (C) 2006-2010, Brainspark B.V. * *  This file is part of PolarSSL (http://www.polarssl.org) *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> * *  All rights reserved. * *  This program is free software; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License along *  with this program; if not, write to the Free Software Foundation, Inc., *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *//* *  RSA was designed by Ron Rivest, Adi Shamir and Len Adleman. * *  http://theory.lcs.mit.edu/~rivest/rsapaper.pdf *  http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf */#include "config.h"#if defined(POLARSSL_RSA_C)#include "polarssl/rsa.h"#include "polarssl/md.h"#include <stdlib.h>#ifdef PRINTF_STDLIB#include <stdio.h>#endif#ifdef PRINTF_CUSTOM#include "tinystdio.h"#endif/* * Initialize an RSA context */void rsa_init( rsa_context *ctx,               int padding,               int hash_id ){    memset( ctx, 0, sizeof( rsa_context ) );    ctx->padding = padding;    ctx->hash_id = hash_id;}#if defined(POLARSSL_GENPRIME)/* * Generate an RSA keypair */int rsa_gen_key( rsa_context *ctx,        int (*f_rng)(void *),        void *p_rng,        unsigned int nbits, int exponent ){    int ret;    mpi P1, Q1, H, G;    if( f_rng == NULL || nbits < 128 || exponent < 3 )        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );    mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );    /*     * find primes P and Q with Q < P so that:     * GCD( E, (P-1)*(Q-1) ) == 1     */    MPI_CHK( mpi_lset( &ctx->E, exponent ) );    do    {        MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0,                                 f_rng, p_rng ) );        MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0,                                f_rng, p_rng ) );        if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )            mpi_swap( &ctx->P, &ctx->Q );        if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )            continue;        MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );        if( mpi_msb( &ctx->N ) != nbits )            continue;        MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );        MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );        MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );        MPI_CHK( mpi_gcd( &G, &ctx->E, &H  ) );    }    while( mpi_cmp_int( &G, 1 ) != 0 );    /*     * D  = E^-1 mod ((P-1)*(Q-1))     * DP = D mod (P - 1)     * DQ = D mod (Q - 1)     * QP = Q^-1 mod P     */    MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H  ) );    MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );    MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );    MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );    ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;cleanup:    mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );    if( ret != 0 )    {        rsa_free( ctx );        return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret );    }    return( 0 );   }#endif/* * Check a public RSA key */int rsa_check_pubkey( const rsa_context *ctx ){    if( !ctx->N.p || !ctx->E.p )        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );    if( ( ctx->N.p[0] & 1 ) == 0 ||         ( ctx->E.p[0] & 1 ) == 0 )        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );    if( mpi_msb( &ctx->N ) < 128 ||        mpi_msb( &ctx->N ) > 4096 )        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );    if( mpi_msb( &ctx->E ) < 2 ||        mpi_msb( &ctx->E ) > 64 )        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );    return( 0 );}/* * Check a private RSA key */int rsa_check_privkey( const rsa_context *ctx ){    int ret;    mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2;    if( ( ret = rsa_check_pubkey( ctx ) ) != 0 )        return( ret );    if( !ctx->P.p || !ctx->Q.p || !ctx->D.p )        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );    mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 );    mpi_init( &H  ); mpi_init( &I  ); mpi_init( &G  ); mpi_init( &G2 );    mpi_init( &L1 ); mpi_init( &L2 );    MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) );    MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) );    MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );    MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );    MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );    MPI_CHK( mpi_gcd( &G, &ctx->E, &H  ) );    MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) );    MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) );      MPI_CHK( mpi_mod_mpi( &I, &DE, &L1  ) );    /*     * Check for a valid PKCS1v2 private key     */    if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 ||        mpi_cmp_int( &L2, 0 ) != 0 ||        mpi_cmp_int( &I, 1 ) != 0 ||        mpi_cmp_int( &G, 1 ) != 0 )    {        ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED;    }    cleanup:    mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 );    mpi_free( &H  ); mpi_free( &I  ); mpi_free( &G  ); mpi_free( &G2 );    mpi_free( &L1 ); mpi_free( &L2 );    if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED )        return( ret );    if( ret != 0 )        return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret );    return( 0 );}/* * Do an RSA public key operation */int rsa_public( rsa_context *ctx,                const unsigned char *input,                unsigned char *output ){    int ret;    size_t olen;    mpi T;    mpi_init( &T );    MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );    if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )    {        mpi_free( &T );        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );    }    olen = ctx->len;    MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );    MPI_CHK( mpi_write_binary( &T, output, olen ) );cleanup:    mpi_free( &T );    if( ret != 0 )        return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );    return( 0 );}/* * Do an RSA private key operation */int rsa_private( rsa_context *ctx,                 const unsigned char *input,                 unsigned char *output ){    int ret;    size_t olen;    mpi T, T1, T2;    mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );    MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );    if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )    {        mpi_free( &T );        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );    }#if defined(POLARSSL_RSA_NO_CRT)    MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) );#else    /*     * faster decryption using the CRT     *     * T1 = input ^ dP mod P     * T2 = input ^ dQ mod Q     */    MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) );    MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) );    /*     * T = (T1 - T2) * (Q^-1 mod P) mod P     */    MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) );    MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) );    MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );    /*     * output = T2 + T * Q     */    MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) );    MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );#endif    olen = ctx->len;    MPI_CHK( mpi_write_binary( &T, output, olen ) );cleanup:    mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );    if( ret != 0 )        return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );    return( 0 );}#if defined(POLARSSL_PKCS1_V21)/** * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer. * * @param dst       buffer to mask * @param dlen      length of destination buffer * @param src       source of the mask generation * @param slen      length of the source buffer * @param md_ctx    message digest context to use */static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen,                         md_context_t *md_ctx ){    unsigned char mask[POLARSSL_MD_MAX_SIZE];    unsigned char counter[4];    unsigned char *p;    unsigned int hlen;    size_t i, use_len;    memset( mask, 0, POLARSSL_MD_MAX_SIZE );    memset( counter, 0, 4 );    hlen = md_ctx->md_info->size;    // Generate and apply dbMask    //    p = dst;    while( dlen > 0 )    {        use_len = hlen;        if( dlen < hlen )            use_len = dlen;        md_starts( md_ctx );        md_update( md_ctx, src, slen );        md_update( md_ctx, counter, 4 );        md_finish( md_ctx, mask );        for( i = 0; i < use_len; ++i )            *p++ ^= mask[i];        counter[3]++;        dlen -= use_len;    }}#endif/* * Add the message padding, then do an RSA operation */int rsa_pkcs1_encrypt( rsa_context *ctx,                       int (*f_rng)(void *),                       void *p_rng,                       int mode, size_t ilen,                       const unsigned char *input,                       unsigned char *output ){    size_t nb_pad, olen;    unsigned char *p = output;#if defined(POLARSSL_PKCS1_V21)    unsigned int i, hlen;    const md_info_t *md_info;    md_context_t md_ctx;#endif    olen = ctx->len;    if( f_rng == NULL )        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );    switch( ctx->padding )    {        case RSA_PKCS_V15:            if( olen < ilen + 11 )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            nb_pad = olen - 3 - ilen;            *p++ = 0;            *p++ = RSA_CRYPT;            while( nb_pad-- > 0 )            {                int rng_dl = 100;                do {                    *p = (unsigned char) f_rng( p_rng );                } while( *p == 0 && --rng_dl );                // Check if RNG failed to generate data                //                if( rng_dl == 0 )                    return POLARSSL_ERR_RSA_RNG_FAILED;                p++;            }            *p++ = 0;            memcpy( p, input, ilen );            break;        #if defined(POLARSSL_PKCS1_V21)        case RSA_PKCS_V21:            md_info = md_info_from_type( ctx->hash_id );            if( md_info == NULL )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            hlen = md_get_size( md_info );            if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            memset( output, 0, olen );            memset( &md_ctx, 0, sizeof( md_context_t ) );            md_init_ctx( &md_ctx, md_info );            *p++ = 0;            // Generate a random octet string seed            //            for( i = 0; i < hlen; ++i )                *p++ = (unsigned char) f_rng( p_rng );             // Construct DB            //            md( md_info, p, 0, p );            p += hlen;            p += olen - 2 * hlen - 2 - ilen;            *p++ = 1;            memcpy( p, input, ilen );             // maskedDB: Apply dbMask to DB            //            mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,                         &md_ctx );            // maskedSeed: Apply seedMask to seed            //            mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,                         &md_ctx );            break;#endif        default:            return( POLARSSL_ERR_RSA_INVALID_PADDING );    }    return( ( mode == RSA_PUBLIC )            ? rsa_public(  ctx, output, output )            : rsa_private( ctx, output, output ) );}/* * Do an RSA operation, then remove the message padding */int rsa_pkcs1_decrypt( rsa_context *ctx,                       int mode, size_t *olen,                       const unsigned char *input,                       unsigned char *output,                       size_t output_max_len){    int ret;    size_t ilen;    unsigned char *p;    unsigned char buf[1024];#if defined(POLARSSL_PKCS1_V21)    unsigned char lhash[POLARSSL_MD_MAX_SIZE];    unsigned int hlen;    const md_info_t *md_info;    md_context_t md_ctx;#endif    ilen = ctx->len;    if( ilen < 16 || ilen > sizeof( buf ) )        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );    ret = ( mode == RSA_PUBLIC )          ? rsa_public(  ctx, input, buf )          : rsa_private( ctx, input, buf );    if( ret != 0 )        return( ret );    p = buf;    switch( ctx->padding )    {        case RSA_PKCS_V15:            if( *p++ != 0 || *p++ != RSA_CRYPT )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            while( *p != 0 )            {                if( p >= buf + ilen - 1 )                    return( POLARSSL_ERR_RSA_INVALID_PADDING );                p++;            }            p++;            break;#if defined(POLARSSL_PKCS1_V21)        case RSA_PKCS_V21:                        if( *p++ != 0 )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            md_info = md_info_from_type( ctx->hash_id );            if( md_info == NULL )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );                            hlen = md_get_size( md_info );            memset( &md_ctx, 0, sizeof( md_context_t ) );            md_init_ctx( &md_ctx, md_info );                        // Generate lHash            //            md( md_info, lhash, 0, lhash );            // seed: Apply seedMask to maskedSeed            //            mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,                       &md_ctx );            // DB: Apply dbMask to maskedDB            //            mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,                         &md_ctx );            p += hlen;            // Check validity            //            if( memcmp( lhash, p, hlen ) != 0 )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            p += hlen;            while( *p == 0 && p < buf + ilen )                p++;            if( p == buf + ilen )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            if( *p++ != 0x01 )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            break;#endif        default:            return( POLARSSL_ERR_RSA_INVALID_PADDING );    }    if (ilen - (p - buf) > output_max_len)        return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );    *olen = ilen - (p - buf);    memcpy( output, p, *olen );    return( 0 );}/* * Do an RSA operation to sign the message digest */int rsa_pkcs1_sign( rsa_context *ctx,                    int (*f_rng)(void *),                    void *p_rng,                    int mode,                    int hash_id,                    unsigned int hashlen,                    const unsigned char *hash,                    unsigned char *sig ){    size_t nb_pad, olen;    unsigned char *p = sig;#if defined(POLARSSL_PKCS1_V21)    unsigned char salt[POLARSSL_MD_MAX_SIZE];    unsigned int i, slen, hlen, offset = 0;    size_t msb;    const md_info_t *md_info;    md_context_t md_ctx;#else    (void) f_rng;    (void) p_rng;#endif    olen = ctx->len;    switch( ctx->padding )    {        case RSA_PKCS_V15:            switch( hash_id )            {                case SIG_RSA_RAW:                    nb_pad = olen - 3 - hashlen;                    break;                case SIG_RSA_MD2:                case SIG_RSA_MD4:                case SIG_RSA_MD5:                    nb_pad = olen - 3 - 34;                    break;                case SIG_RSA_SHA1:                    nb_pad = olen - 3 - 35;                    break;                case SIG_RSA_SHA224:                    nb_pad = olen - 3 - 47;                    break;                case SIG_RSA_SHA256:                    nb_pad = olen - 3 - 51;                    break;                case SIG_RSA_SHA384:                    nb_pad = olen - 3 - 67;                    break;                case SIG_RSA_SHA512:                    nb_pad = olen - 3 - 83;                    break;                default:                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            }            if( nb_pad < 8 )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            *p++ = 0;            *p++ = RSA_SIGN;            memset( p, 0xFF, nb_pad );            p += nb_pad;            *p++ = 0;            switch( hash_id )            {                case SIG_RSA_RAW:                    memcpy( p, hash, hashlen );                    break;                case SIG_RSA_MD2:                    memcpy( p, ASN1_HASH_MDX, 18 );                    memcpy( p + 18, hash, 16 );                    p[13] = 2; break;                case SIG_RSA_MD4:                    memcpy( p, ASN1_HASH_MDX, 18 );                    memcpy( p + 18, hash, 16 );                    p[13] = 4; break;                case SIG_RSA_MD5:                    memcpy( p, ASN1_HASH_MDX, 18 );                    memcpy( p + 18, hash, 16 );                    p[13] = 5; break;                case SIG_RSA_SHA1:                    memcpy( p, ASN1_HASH_SHA1, 15 );                    memcpy( p + 15, hash, 20 );                    break;                case SIG_RSA_SHA224:                    memcpy( p, ASN1_HASH_SHA2X, 19 );                    memcpy( p + 19, hash, 28 );                    p[1] += 28; p[14] = 4; p[18] += 28; break;                case SIG_RSA_SHA256:                    memcpy( p, ASN1_HASH_SHA2X, 19 );                    memcpy( p + 19, hash, 32 );                    p[1] += 32; p[14] = 1; p[18] += 32; break;                case SIG_RSA_SHA384:                    memcpy( p, ASN1_HASH_SHA2X, 19 );                    memcpy( p + 19, hash, 48 );                    p[1] += 48; p[14] = 2; p[18] += 48; break;                case SIG_RSA_SHA512:                    memcpy( p, ASN1_HASH_SHA2X, 19 );                    memcpy( p + 19, hash, 64 );                    p[1] += 64; p[14] = 3; p[18] += 64; break;                default:                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            }            break;#if defined(POLARSSL_PKCS1_V21)        case RSA_PKCS_V21:            if( f_rng == NULL )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            switch( hash_id )            {                case SIG_RSA_MD2:                case SIG_RSA_MD4:                case SIG_RSA_MD5:                    hashlen = 16;                    break;                case SIG_RSA_SHA1:                    hashlen = 20;                    break;                case SIG_RSA_SHA224:                    hashlen = 28;                    break;                case SIG_RSA_SHA256:                    hashlen = 32;                    break;                case SIG_RSA_SHA384:                    hashlen = 48;                    break;                case SIG_RSA_SHA512:                    hashlen = 64;                    break;                default:                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            }            md_info = md_info_from_type( ctx->hash_id );            if( md_info == NULL )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );                            hlen = md_get_size( md_info );            slen = hlen;            memset( sig, 0, olen );            memset( &md_ctx, 0, sizeof( md_context_t ) );            md_init_ctx( &md_ctx, md_info );            msb = mpi_msb( &ctx->N ) - 1;            // Generate salt of length slen            //            for( i = 0; i < slen; ++i )                salt[i] = (unsigned char) f_rng( p_rng );             // Note: EMSA-PSS encoding is over the length of N - 1 bits            //            msb = mpi_msb( &ctx->N ) - 1;            p += olen - hlen * 2 - 2;            *p++ = 0x01;            memcpy( p, salt, slen );            p += slen;            // Generate H = Hash( M' )            //            md_starts( &md_ctx );            md_update( &md_ctx, p, 8 );            md_update( &md_ctx, hash, hashlen );            md_update( &md_ctx, salt, slen );            md_finish( &md_ctx, p );            // Compensate for boundary condition when applying mask            //            if( msb % 8 == 0 )                offset = 1;            // maskedDB: Apply dbMask to DB            //            mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );            msb = mpi_msb( &ctx->N ) - 1;            sig[0] &= 0xFF >> ( olen * 8 - msb );            p += hlen;            *p++ = 0xBC;            break;#endif        default:            return( POLARSSL_ERR_RSA_INVALID_PADDING );    }    return( ( mode == RSA_PUBLIC )            ? rsa_public(  ctx, sig, sig )            : rsa_private( ctx, sig, sig ) );}/* * Do an RSA operation and check the message digest */int rsa_pkcs1_verify( rsa_context *ctx,                      int mode,                      int hash_id,                      unsigned int hashlen,                      const unsigned char *hash,                      unsigned char *sig ){    int ret;    size_t len, siglen;    unsigned char *p, c;    unsigned char buf[1024];#if defined(POLARSSL_PKCS1_V21)    unsigned char zeros[8];    unsigned int hlen;    size_t slen, msb;    const md_info_t *md_info;    md_context_t md_ctx;#endif    siglen = ctx->len;    if( siglen < 16 || siglen > sizeof( buf ) )        return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );    ret = ( mode == RSA_PUBLIC )          ? rsa_public(  ctx, sig, buf )          : rsa_private( ctx, sig, buf );    if( ret != 0 )        return( ret );    p = buf;    switch( ctx->padding )    {        case RSA_PKCS_V15:            if( *p++ != 0 || *p++ != RSA_SIGN )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            while( *p != 0 )            {                if( p >= buf + siglen - 1 || *p != 0xFF )                    return( POLARSSL_ERR_RSA_INVALID_PADDING );                p++;            }            p++;            len = siglen - ( p - buf );            if( len == 34 )            {                c = p[13];                p[13] = 0;                if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 )                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );                if( ( c == 2 && hash_id == SIG_RSA_MD2 ) ||                        ( c == 4 && hash_id == SIG_RSA_MD4 ) ||                        ( c == 5 && hash_id == SIG_RSA_MD5 ) )                {                    if( memcmp( p + 18, hash, 16 ) == 0 )                         return( 0 );                    else                        return( POLARSSL_ERR_RSA_VERIFY_FAILED );                }            }            if( len == 35 && hash_id == SIG_RSA_SHA1 )            {                if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 &&                        memcmp( p + 15, hash, 20 ) == 0 )                    return( 0 );                else                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );            }            if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) ||                    ( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) ||                    ( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) ||                    ( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) )            {                c = p[1] - 17;                p[1] = 17;                p[14] = 0;                if( p[18] == c &&                        memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 &&                        memcmp( p + 19, hash, c ) == 0 )                    return( 0 );                else                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );            }            if( len == hashlen && hash_id == SIG_RSA_RAW )            {                if( memcmp( p, hash, hashlen ) == 0 )                    return( 0 );                else                    return( POLARSSL_ERR_RSA_VERIFY_FAILED );            }            break;#if defined(POLARSSL_PKCS1_V21)        case RSA_PKCS_V21:                        if( buf[siglen - 1] != 0xBC )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            switch( hash_id )            {                case SIG_RSA_MD2:                case SIG_RSA_MD4:                case SIG_RSA_MD5:                    hashlen = 16;                    break;                case SIG_RSA_SHA1:                    hashlen = 20;                    break;                case SIG_RSA_SHA224:                    hashlen = 28;                    break;                case SIG_RSA_SHA256:                    hashlen = 32;                    break;                case SIG_RSA_SHA384:                    hashlen = 48;                    break;                case SIG_RSA_SHA512:                    hashlen = 64;                    break;                default:                    return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            }            md_info = md_info_from_type( ctx->hash_id );            if( md_info == NULL )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );                            hlen = md_get_size( md_info );            slen = siglen - hlen - 1;            memset( &md_ctx, 0, sizeof( md_context_t ) );            memset( zeros, 0, 8 );            md_init_ctx( &md_ctx, md_info );            // Note: EMSA-PSS verification is over the length of N - 1 bits            //            msb = mpi_msb( &ctx->N ) - 1;            // Compensate for boundary condition when applying mask            //            if( msb % 8 == 0 )            {                p++;                siglen -= 1;            }            if( buf[0] >> ( 8 - siglen * 8 + msb ) )                return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );            mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );            buf[0] &= 0xFF >> ( siglen * 8 - msb );            while( *p == 0 && p < buf + siglen )                p++;            if( p == buf + siglen )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            if( *p++ != 0x01 )                return( POLARSSL_ERR_RSA_INVALID_PADDING );            slen -= p - buf;            // Generate H = Hash( M' )            //            md_starts( &md_ctx );            md_update( &md_ctx, zeros, 8 );            md_update( &md_ctx, hash, hashlen );            md_update( &md_ctx, p, slen );            md_finish( &md_ctx, p );            if( memcmp( p, p + slen, hlen ) == 0 )                return( 0 );            else                return( POLARSSL_ERR_RSA_VERIFY_FAILED );#endif        default:            return( POLARSSL_ERR_RSA_INVALID_PADDING );    }    return( POLARSSL_ERR_RSA_INVALID_PADDING );}/* * Free the components of an RSA key */void rsa_free( rsa_context *ctx ){    mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN );    mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP );    mpi_free( &ctx->Q  ); mpi_free( &ctx->P  ); mpi_free( &ctx->D );    mpi_free( &ctx->E  ); mpi_free( &ctx->N  );}#if defined(POLARSSL_SELF_TEST)#include "polarssl/sha1.h"/* * Example RSA-1024 keypair, for test purposes */#define KEY_LEN 128#define RSA_N   "9292758453063D803DD603D5E777D788" \                "8ED1D5BF35786190FA2F23EBC0848AEA" \                "DDA92CA6C3D80B32C4D109BE0F36D6AE" \                "7130B9CED7ACDF54CFC7555AC14EEBAB" \                "93A89813FBF3C4F8066D2D800F7C38A8" \                "1AE31942917403FF4946B0A83D3D3E05" \                "EE57C6F5F5606FB5D4BC6CD34EE0801A" \                "5E94BB77B07507233A0BC7BAC8F90F79"#define RSA_E   "10001"#define RSA_D   "24BF6185468786FDD303083D25E64EFC" \                "66CA472BC44D253102F8B4A9D3BFA750" \                "91386C0077937FE33FA3252D28855837" \                "AE1B484A8A9A45F7EE8C0C634F99E8CD" \                "DF79C5CE07EE72C7F123142198164234" \                "CABB724CF78B8173B9F880FC86322407" \                "AF1FEDFDDE2BEB674CA15F3E81A1521E" \                "071513A1E85B5DFA031F21ECAE91A34D"#define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \                "2C01CAD19EA484A87EA4377637E75500" \                "FCB2005C5C7DD6EC4AC023CDA285D796" \                "C3D9E75E1EFC42488BB4F1D13AC30A57"#define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \                "E211C2B9E5DB1ED0BF61D0D9899620F4" \                "910E4168387E3C30AA1E00C339A79508" \                "8452DD96A9A5EA5D9DCA68DA636032AF"#define RSA_DP  "C1ACF567564274FB07A0BBAD5D26E298" \                "3C94D22288ACD763FD8E5600ED4A702D" \                "F84198A5F06C2E72236AE490C93F07F8" \                "3CC559CD27BC2D1CA488811730BB5725"#define RSA_DQ  "4959CBF6F8FEF750AEE6977C155579C7" \                "D8AAEA56749EA28623272E4F7D0592AF" \                "7C1F1313CAC9471B5C523BFE592F517B" \                "407A1BD76C164B93DA2D32A383E58357"#define RSA_QP  "9AE7FBC99546432DF71896FC239EADAE" \                "F38D18D2B2F0E2DD275AA977E2BF4411" \                "F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \                "A74206CEC169D74BF5A8C50D6F48EA08"#define PT_LEN  24#define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \                "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"static int myrand( void *rng_state ){    if( rng_state != NULL )        rng_state  = NULL;    return( rand() );}/* * Checkup routine */int rsa_self_test( int verbose ){    size_t len;    rsa_context rsa;    unsigned char rsa_plaintext[PT_LEN];    unsigned char rsa_decrypted[PT_LEN];    unsigned char rsa_ciphertext[KEY_LEN];#if defined(POLARSSL_SHA1_C)    unsigned char sha1sum[20];#endif    rsa_init( &rsa, RSA_PKCS_V15, 0 );    rsa.len = KEY_LEN;    mpi_read_string( &rsa.N , 16, RSA_N  );    mpi_read_string( &rsa.E , 16, RSA_E  );    mpi_read_string( &rsa.D , 16, RSA_D  );    mpi_read_string( &rsa.P , 16, RSA_P  );    mpi_read_string( &rsa.Q , 16, RSA_Q  );    mpi_read_string( &rsa.DP, 16, RSA_DP );    mpi_read_string( &rsa.DQ, 16, RSA_DQ );    mpi_read_string( &rsa.QP, 16, RSA_QP );    if( verbose != 0 )        printf( "  RSA key validation: " );    if( rsa_check_pubkey(  &rsa ) != 0 ||        rsa_check_privkey( &rsa ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n  PKCS#1 encryption : " );    memcpy( rsa_plaintext, RSA_PT, PT_LEN );    if( rsa_pkcs1_encrypt( &rsa, &myrand, NULL, RSA_PUBLIC, PT_LEN,                           rsa_plaintext, rsa_ciphertext ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n  PKCS#1 decryption : " );    if( rsa_pkcs1_decrypt( &rsa, RSA_PRIVATE, &len,                           rsa_ciphertext, rsa_decrypted,                           sizeof(rsa_decrypted) ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }#if defined(POLARSSL_SHA1_C)    if( verbose != 0 )        printf( "passed\n  PKCS#1 data sign  : " );    sha1( rsa_plaintext, PT_LEN, sha1sum );    if( rsa_pkcs1_sign( &rsa, NULL, NULL, RSA_PRIVATE, SIG_RSA_SHA1, 20,                        sha1sum, rsa_ciphertext ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n  PKCS#1 sig. verify: " );    if( rsa_pkcs1_verify( &rsa, RSA_PUBLIC, SIG_RSA_SHA1, 20,                          sha1sum, rsa_ciphertext ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n\n" );#endif /* POLARSSL_SHA1_C */    rsa_free( &rsa );    return( 0 );}#endif#endif
 |