| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 | /** *  \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion * *  Copyright (C) 2006-2010, Brainspark B.V. * *  This file is part of PolarSSL (http://www.polarssl.org) *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> * *  All rights reserved. * *  This program is free software; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License along *  with this program; if not, write to the Free Software Foundation, Inc., *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *//* *  The HAVEGE RNG was designed by Andre Seznec in 2002. * *  http://www.irisa.fr/caps/projects/hipsor/publi.php * *  Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr */#include "config.h"#if defined(POLARSSL_HAVEGE_C)#include "polarssl/havege.h"#include "polarssl/timing.h"#include <string.h>#include <time.h>/* ------------------------------------------------------------------------ * On average, one iteration accesses two 8-word blocks in the havege WALK * table, and generates 16 words in the RES array. * * The data read in the WALK table is updated and permuted after each use. * The result of the hardware clock counter read is used  for this update. * * 25 conditional tests are present.  The conditional tests are grouped in * two nested  groups of 12 conditional tests and 1 test that controls the * permutation; on average, there should be 6 tests executed and 3 of them * should be mispredicted. * ------------------------------------------------------------------------ */#define SWAP(X,Y) { int *T = X; X = Y; Y = T; }#define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;#define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;#define TST1_LEAVE U1++; }#define TST2_LEAVE U2++; }#define ONE_ITERATION                                   \                                                        \    PTEST = PT1 >> 20;                                  \                                                        \    TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \    TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \    TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \                                                        \    TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \    TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \    TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \                                                        \    PTX = (PT1 >> 18) & 7;                              \    PT1 &= 0x1FFF;                                      \    PT2 &= 0x1FFF;                                      \    CLK = (int) hardclock();                            \                                                        \    i = 0;                                              \    A = &WALK[PT1    ]; RES[i++] ^= *A;                 \    B = &WALK[PT2    ]; RES[i++] ^= *B;                 \    C = &WALK[PT1 ^ 1]; RES[i++] ^= *C;                 \    D = &WALK[PT2 ^ 4]; RES[i++] ^= *D;                 \                                                        \    IN = (*A >> (1)) ^ (*A << (31)) ^ CLK;              \    *A = (*B >> (2)) ^ (*B << (30)) ^ CLK;              \    *B = IN ^ U1;                                       \    *C = (*C >> (3)) ^ (*C << (29)) ^ CLK;              \    *D = (*D >> (4)) ^ (*D << (28)) ^ CLK;              \                                                        \    A = &WALK[PT1 ^ 2]; RES[i++] ^= *A;                 \    B = &WALK[PT2 ^ 2]; RES[i++] ^= *B;                 \    C = &WALK[PT1 ^ 3]; RES[i++] ^= *C;                 \    D = &WALK[PT2 ^ 6]; RES[i++] ^= *D;                 \                                                        \    if( PTEST & 1 ) SWAP( A, C );                       \                                                        \    IN = (*A >> (5)) ^ (*A << (27)) ^ CLK;              \    *A = (*B >> (6)) ^ (*B << (26)) ^ CLK;              \    *B = IN; CLK = (int) hardclock();                   \    *C = (*C >> (7)) ^ (*C << (25)) ^ CLK;              \    *D = (*D >> (8)) ^ (*D << (24)) ^ CLK;              \                                                        \    A = &WALK[PT1 ^ 4];                                 \    B = &WALK[PT2 ^ 1];                                 \                                                        \    PTEST = PT2 >> 1;                                   \                                                        \    PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]);   \    PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8);  \    PTY = (PT2 >> 10) & 7;                              \                                                        \    TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \    TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \    TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \                                                        \    TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \    TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \    TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \                                                        \    C = &WALK[PT1 ^ 5];                                 \    D = &WALK[PT2 ^ 5];                                 \                                                        \    RES[i++] ^= *A;                                     \    RES[i++] ^= *B;                                     \    RES[i++] ^= *C;                                     \    RES[i++] ^= *D;                                     \                                                        \    IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK;             \    *A = (*B >> (10)) ^ (*B << (22)) ^ CLK;             \    *B = IN ^ U2;                                       \    *C = (*C >> (11)) ^ (*C << (21)) ^ CLK;             \    *D = (*D >> (12)) ^ (*D << (20)) ^ CLK;             \                                                        \    A = &WALK[PT1 ^ 6]; RES[i++] ^= *A;                 \    B = &WALK[PT2 ^ 3]; RES[i++] ^= *B;                 \    C = &WALK[PT1 ^ 7]; RES[i++] ^= *C;                 \    D = &WALK[PT2 ^ 7]; RES[i++] ^= *D;                 \                                                        \    IN = (*A >> (13)) ^ (*A << (19)) ^ CLK;             \    *A = (*B >> (14)) ^ (*B << (18)) ^ CLK;             \    *B = IN;                                            \    *C = (*C >> (15)) ^ (*C << (17)) ^ CLK;             \    *D = (*D >> (16)) ^ (*D << (16)) ^ CLK;             \                                                        \    PT1 = ( RES[(i - 8) ^ PTX] ^                        \            WALK[PT1 ^ PTX ^ 7] ) & (~1);               \    PT1 ^= (PT2 ^ 0x10) & 0x10;                         \                                                        \    for( n++, i = 0; i < 16; i++ )                      \        hs->pool[n % COLLECT_SIZE] ^= RES[i];/* * Entropy gathering function */static void havege_fill( havege_state *hs ){    int i, n = 0;    int  U1,  U2, *A, *B, *C, *D;    int PT1, PT2, *WALK, RES[16];    int PTX, PTY, CLK, PTEST, IN;    WALK = hs->WALK;    PT1  = hs->PT1;    PT2  = hs->PT2;    PTX  = U1 = 0;    PTY  = U2 = 0;    memset( RES, 0, sizeof( RES ) );    while( n < COLLECT_SIZE * 4 )    {        ONE_ITERATION        ONE_ITERATION        ONE_ITERATION        ONE_ITERATION    }    hs->PT1 = PT1;    hs->PT2 = PT2;    hs->offset[0] = 0;    hs->offset[1] = COLLECT_SIZE / 2;}/* * HAVEGE initialization */void havege_init( havege_state *hs ){    memset( hs, 0, sizeof( havege_state ) );    havege_fill( hs );}/* * HAVEGE rand function */int havege_rand( void *p_rng ){    int ret;    havege_state *hs = (havege_state *) p_rng;    if( hs->offset[1] >= COLLECT_SIZE )        havege_fill( hs );    ret  = hs->pool[hs->offset[0]++];    ret ^= hs->pool[hs->offset[1]++];    return( ret );}#endif
 |