bignum.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097
  1. /*
  2. * Multi-precision integer library
  3. *
  4. * Copyright (C) 2006-2010, Brainspark B.V.
  5. *
  6. * This file is part of PolarSSL (http://www.polarssl.org)
  7. * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  24. */
  25. /*
  26. * This MPI implementation is based on:
  27. *
  28. * http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf
  29. * http://www.stillhq.com/extracted/gnupg-api/mpi/
  30. * http://math.libtomcrypt.com/files/tommath.pdf
  31. */
  32. #include "config.h"
  33. #if defined(POLARSSL_BIGNUM_C)
  34. #include "polarssl/bignum.h"
  35. #include "polarssl/bn_mul.h"
  36. #include <stdlib.h>
  37. #define ciL (sizeof(t_uint)) /* chars in limb */
  38. #define biL (ciL << 3) /* bits in limb */
  39. #define biH (ciL << 2) /* half limb size */
  40. /*
  41. * Convert between bits/chars and number of limbs
  42. */
  43. #define BITS_TO_LIMBS(i) (((i) + biL - 1) / biL)
  44. #define CHARS_TO_LIMBS(i) (((i) + ciL - 1) / ciL)
  45. /*
  46. * Initialize one MPI
  47. */
  48. void mpi_init( mpi *X )
  49. {
  50. if( X == NULL )
  51. return;
  52. X->s = 1;
  53. X->n = 0;
  54. X->p = NULL;
  55. }
  56. /*
  57. * Unallocate one MPI
  58. */
  59. void mpi_free( mpi *X )
  60. {
  61. if( X == NULL )
  62. return;
  63. if( X->p != NULL )
  64. {
  65. memset( X->p, 0, X->n * ciL );
  66. free( X->p );
  67. }
  68. X->s = 1;
  69. X->n = 0;
  70. X->p = NULL;
  71. }
  72. /*
  73. * Enlarge to the specified number of limbs
  74. */
  75. int mpi_grow( mpi *X, size_t nblimbs )
  76. {
  77. t_uint *p;
  78. if( nblimbs > POLARSSL_MPI_MAX_LIMBS )
  79. return( 1 );
  80. if( X->n < nblimbs )
  81. {
  82. if( ( p = (t_uint *) malloc( nblimbs * ciL ) ) == NULL )
  83. return( 1 );
  84. memset( p, 0, nblimbs * ciL );
  85. if( X->p != NULL )
  86. {
  87. memcpy( p, X->p, X->n * ciL );
  88. memset( X->p, 0, X->n * ciL );
  89. free( X->p );
  90. }
  91. X->n = nblimbs;
  92. X->p = p;
  93. }
  94. return( 0 );
  95. }
  96. /*
  97. * Copy the contents of Y into X
  98. */
  99. int mpi_copy( mpi *X, const mpi *Y )
  100. {
  101. int ret;
  102. size_t i;
  103. if( X == Y )
  104. return( 0 );
  105. for( i = Y->n - 1; i > 0; i-- )
  106. if( Y->p[i] != 0 )
  107. break;
  108. i++;
  109. X->s = Y->s;
  110. MPI_CHK( mpi_grow( X, i ) );
  111. memset( X->p, 0, X->n * ciL );
  112. memcpy( X->p, Y->p, i * ciL );
  113. cleanup:
  114. return( ret );
  115. }
  116. /*
  117. * Swap the contents of X and Y
  118. */
  119. void mpi_swap( mpi *X, mpi *Y )
  120. {
  121. mpi T;
  122. memcpy( &T, X, sizeof( mpi ) );
  123. memcpy( X, Y, sizeof( mpi ) );
  124. memcpy( Y, &T, sizeof( mpi ) );
  125. }
  126. /*
  127. * Set value from integer
  128. */
  129. int mpi_lset( mpi *X, t_sint z )
  130. {
  131. int ret;
  132. MPI_CHK( mpi_grow( X, 1 ) );
  133. memset( X->p, 0, X->n * ciL );
  134. X->p[0] = ( z < 0 ) ? -z : z;
  135. X->s = ( z < 0 ) ? -1 : 1;
  136. cleanup:
  137. return( ret );
  138. }
  139. /*
  140. * Get a specific bit
  141. */
  142. int mpi_get_bit( mpi *X, size_t pos )
  143. {
  144. if( X->n * biL <= pos )
  145. return( 0 );
  146. return ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01;
  147. }
  148. /*
  149. * Set a bit to a specific value of 0 or 1
  150. */
  151. int mpi_set_bit( mpi *X, size_t pos, unsigned char val )
  152. {
  153. int ret = 0;
  154. size_t off = pos / biL;
  155. size_t idx = pos % biL;
  156. if( val != 0 && val != 1 )
  157. return POLARSSL_ERR_MPI_BAD_INPUT_DATA;
  158. if( X->n * biL <= pos )
  159. {
  160. if( val == 0 )
  161. return ( 0 );
  162. MPI_CHK( mpi_grow( X, off + 1 ) );
  163. }
  164. X->p[off] = ( X->p[off] & ~( 0x01 << idx ) ) | ( val << idx );
  165. cleanup:
  166. return( ret );
  167. }
  168. /*
  169. * Return the number of least significant bits
  170. */
  171. size_t mpi_lsb( const mpi *X )
  172. {
  173. size_t i, j, count = 0;
  174. for( i = 0; i < X->n; i++ )
  175. for( j = 0; j < biL; j++, count++ )
  176. if( ( ( X->p[i] >> j ) & 1 ) != 0 )
  177. return( count );
  178. return( 0 );
  179. }
  180. /*
  181. * Return the number of most significant bits
  182. */
  183. size_t mpi_msb( const mpi *X )
  184. {
  185. size_t i, j;
  186. for( i = X->n - 1; i > 0; i-- )
  187. if( X->p[i] != 0 )
  188. break;
  189. for( j = biL; j > 0; j-- )
  190. if( ( ( X->p[i] >> ( j - 1 ) ) & 1 ) != 0 )
  191. break;
  192. return( ( i * biL ) + j );
  193. }
  194. /*
  195. * Return the total size in bytes
  196. */
  197. size_t mpi_size( const mpi *X )
  198. {
  199. return( ( mpi_msb( X ) + 7 ) >> 3 );
  200. }
  201. /*
  202. * Convert an ASCII character to digit value
  203. */
  204. static int mpi_get_digit( t_uint *d, int radix, char c )
  205. {
  206. *d = 255;
  207. if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
  208. if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
  209. if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
  210. if( *d >= (t_uint) radix )
  211. return( POLARSSL_ERR_MPI_INVALID_CHARACTER );
  212. return( 0 );
  213. }
  214. /*
  215. * Import from an ASCII string
  216. */
  217. int mpi_read_string( mpi *X, int radix, const char *s )
  218. {
  219. int ret;
  220. size_t i, j, slen, n;
  221. t_uint d;
  222. mpi T;
  223. if( radix < 2 || radix > 16 )
  224. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  225. mpi_init( &T );
  226. slen = strlen( s );
  227. if( radix == 16 )
  228. {
  229. n = BITS_TO_LIMBS( slen << 2 );
  230. MPI_CHK( mpi_grow( X, n ) );
  231. MPI_CHK( mpi_lset( X, 0 ) );
  232. for( i = slen, j = 0; i > 0; i--, j++ )
  233. {
  234. if( i == 1 && s[i - 1] == '-' )
  235. {
  236. X->s = -1;
  237. break;
  238. }
  239. MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
  240. X->p[j / (2 * ciL)] |= d << ( (j % (2 * ciL)) << 2 );
  241. }
  242. }
  243. else
  244. {
  245. MPI_CHK( mpi_lset( X, 0 ) );
  246. for( i = 0; i < slen; i++ )
  247. {
  248. if( i == 0 && s[i] == '-' )
  249. {
  250. X->s = -1;
  251. continue;
  252. }
  253. MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
  254. MPI_CHK( mpi_mul_int( &T, X, radix ) );
  255. if( X->s == 1 )
  256. {
  257. MPI_CHK( mpi_add_int( X, &T, d ) );
  258. }
  259. else
  260. {
  261. MPI_CHK( mpi_sub_int( X, &T, d ) );
  262. }
  263. }
  264. }
  265. cleanup:
  266. mpi_free( &T );
  267. return( ret );
  268. }
  269. /*
  270. * Helper to write the digits high-order first
  271. */
  272. static int mpi_write_hlp( mpi *X, int radix, char **p )
  273. {
  274. int ret;
  275. t_uint r;
  276. if( radix < 2 || radix > 16 )
  277. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  278. MPI_CHK( mpi_mod_int( &r, X, radix ) );
  279. MPI_CHK( mpi_div_int( X, NULL, X, radix ) );
  280. if( mpi_cmp_int( X, 0 ) != 0 )
  281. MPI_CHK( mpi_write_hlp( X, radix, p ) );
  282. if( r < 10 )
  283. *(*p)++ = (char)( r + 0x30 );
  284. else
  285. *(*p)++ = (char)( r + 0x37 );
  286. cleanup:
  287. return( ret );
  288. }
  289. /*
  290. * Export into an ASCII string
  291. */
  292. int mpi_write_string( const mpi *X, int radix, char *s, size_t *slen )
  293. {
  294. int ret = 0;
  295. size_t n;
  296. char *p;
  297. mpi T;
  298. if( radix < 2 || radix > 16 )
  299. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  300. n = mpi_msb( X );
  301. if( radix >= 4 ) n >>= 1;
  302. if( radix >= 16 ) n >>= 1;
  303. n += 3;
  304. if( *slen < n )
  305. {
  306. *slen = n;
  307. return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL );
  308. }
  309. p = s;
  310. mpi_init( &T );
  311. if( X->s == -1 )
  312. *p++ = '-';
  313. if( radix == 16 )
  314. {
  315. int c;
  316. size_t i, j, k;
  317. for( i = X->n, k = 0; i > 0; i-- )
  318. {
  319. for( j = ciL; j > 0; j-- )
  320. {
  321. c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
  322. if( c == 0 && k == 0 && ( i + j + 3 ) != 0 )
  323. continue;
  324. p += sprintf( p, "%02X", c );
  325. k = 1;
  326. }
  327. }
  328. }
  329. else
  330. {
  331. MPI_CHK( mpi_copy( &T, X ) );
  332. if( T.s == -1 )
  333. T.s = 1;
  334. MPI_CHK( mpi_write_hlp( &T, radix, &p ) );
  335. }
  336. *p++ = '\0';
  337. *slen = p - s;
  338. cleanup:
  339. mpi_free( &T );
  340. return( ret );
  341. }
  342. #if defined(POLARSSL_FS_IO)
  343. /*
  344. * Read X from an opened file
  345. */
  346. int mpi_read_file( mpi *X, int radix, FILE *fin )
  347. {
  348. t_uint d;
  349. size_t slen;
  350. char *p;
  351. char s[1024];
  352. memset( s, 0, sizeof( s ) );
  353. if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
  354. return( POLARSSL_ERR_MPI_FILE_IO_ERROR );
  355. slen = strlen( s );
  356. if( s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
  357. if( s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
  358. p = s + slen;
  359. while( --p >= s )
  360. if( mpi_get_digit( &d, radix, *p ) != 0 )
  361. break;
  362. return( mpi_read_string( X, radix, p + 1 ) );
  363. }
  364. /*
  365. * Write X into an opened file (or stdout if fout == NULL)
  366. */
  367. int mpi_write_file( const char *p, const mpi *X, int radix, FILE *fout )
  368. {
  369. int ret;
  370. size_t n, slen, plen;
  371. char s[2048];
  372. n = sizeof( s );
  373. memset( s, 0, n );
  374. n -= 2;
  375. MPI_CHK( mpi_write_string( X, radix, s, (size_t *) &n ) );
  376. if( p == NULL ) p = "";
  377. plen = strlen( p );
  378. slen = strlen( s );
  379. s[slen++] = '\r';
  380. s[slen++] = '\n';
  381. if( fout != NULL )
  382. {
  383. if( fwrite( p, 1, plen, fout ) != plen ||
  384. fwrite( s, 1, slen, fout ) != slen )
  385. return( POLARSSL_ERR_MPI_FILE_IO_ERROR );
  386. }
  387. else
  388. printf( "%s%s", p, s );
  389. cleanup:
  390. return( ret );
  391. }
  392. #endif /* POLARSSL_FS_IO */
  393. /*
  394. * Import X from unsigned binary data, big endian
  395. */
  396. int mpi_read_binary( mpi *X, const unsigned char *buf, size_t buflen )
  397. {
  398. int ret;
  399. size_t i, j, n;
  400. for( n = 0; n < buflen; n++ )
  401. if( buf[n] != 0 )
  402. break;
  403. MPI_CHK( mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) );
  404. MPI_CHK( mpi_lset( X, 0 ) );
  405. for( i = buflen, j = 0; i > n; i--, j++ )
  406. X->p[j / ciL] |= ((t_uint) buf[i - 1]) << ((j % ciL) << 3);
  407. cleanup:
  408. return( ret );
  409. }
  410. /*
  411. * Export X into unsigned binary data, big endian
  412. */
  413. int mpi_write_binary( const mpi *X, unsigned char *buf, size_t buflen )
  414. {
  415. size_t i, j, n;
  416. n = mpi_size( X );
  417. if( buflen < n )
  418. return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL );
  419. memset( buf, 0, buflen );
  420. for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )
  421. buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );
  422. return( 0 );
  423. }
  424. /*
  425. * Left-shift: X <<= count
  426. */
  427. int mpi_shift_l( mpi *X, size_t count )
  428. {
  429. int ret;
  430. size_t i, v0, t1;
  431. t_uint r0 = 0, r1;
  432. v0 = count / (biL );
  433. t1 = count & (biL - 1);
  434. i = mpi_msb( X ) + count;
  435. if( X->n * biL < i )
  436. MPI_CHK( mpi_grow( X, BITS_TO_LIMBS( i ) ) );
  437. ret = 0;
  438. /*
  439. * shift by count / limb_size
  440. */
  441. if( v0 > 0 )
  442. {
  443. for( i = X->n; i > v0; i-- )
  444. X->p[i - 1] = X->p[i - v0 - 1];
  445. for( ; i > 0; i-- )
  446. X->p[i - 1] = 0;
  447. }
  448. /*
  449. * shift by count % limb_size
  450. */
  451. if( t1 > 0 )
  452. {
  453. for( i = v0; i < X->n; i++ )
  454. {
  455. r1 = X->p[i] >> (biL - t1);
  456. X->p[i] <<= t1;
  457. X->p[i] |= r0;
  458. r0 = r1;
  459. }
  460. }
  461. cleanup:
  462. return( ret );
  463. }
  464. /*
  465. * Right-shift: X >>= count
  466. */
  467. int mpi_shift_r( mpi *X, size_t count )
  468. {
  469. size_t i, v0, v1;
  470. t_uint r0 = 0, r1;
  471. v0 = count / biL;
  472. v1 = count & (biL - 1);
  473. /*
  474. * shift by count / limb_size
  475. */
  476. if( v0 > 0 )
  477. {
  478. for( i = 0; i < X->n - v0; i++ )
  479. X->p[i] = X->p[i + v0];
  480. for( ; i < X->n; i++ )
  481. X->p[i] = 0;
  482. }
  483. /*
  484. * shift by count % limb_size
  485. */
  486. if( v1 > 0 )
  487. {
  488. for( i = X->n; i > 0; i-- )
  489. {
  490. r1 = X->p[i - 1] << (biL - v1);
  491. X->p[i - 1] >>= v1;
  492. X->p[i - 1] |= r0;
  493. r0 = r1;
  494. }
  495. }
  496. return( 0 );
  497. }
  498. /*
  499. * Compare unsigned values
  500. */
  501. int mpi_cmp_abs( const mpi *X, const mpi *Y )
  502. {
  503. size_t i, j;
  504. for( i = X->n; i > 0; i-- )
  505. if( X->p[i - 1] != 0 )
  506. break;
  507. for( j = Y->n; j > 0; j-- )
  508. if( Y->p[j - 1] != 0 )
  509. break;
  510. if( i == 0 && j == 0 )
  511. return( 0 );
  512. if( i > j ) return( 1 );
  513. if( j > i ) return( -1 );
  514. for( ; i > 0; i-- )
  515. {
  516. if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
  517. if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
  518. }
  519. return( 0 );
  520. }
  521. /*
  522. * Compare signed values
  523. */
  524. int mpi_cmp_mpi( const mpi *X, const mpi *Y )
  525. {
  526. size_t i, j;
  527. for( i = X->n; i > 0; i-- )
  528. if( X->p[i - 1] != 0 )
  529. break;
  530. for( j = Y->n; j > 0; j-- )
  531. if( Y->p[j - 1] != 0 )
  532. break;
  533. if( i == 0 && j == 0 )
  534. return( 0 );
  535. if( i > j ) return( X->s );
  536. if( j > i ) return( -X->s );
  537. if( X->s > 0 && Y->s < 0 ) return( 1 );
  538. if( Y->s > 0 && X->s < 0 ) return( -1 );
  539. for( ; i > 0; i-- )
  540. {
  541. if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
  542. if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
  543. }
  544. return( 0 );
  545. }
  546. /*
  547. * Compare signed values
  548. */
  549. int mpi_cmp_int( const mpi *X, t_sint z )
  550. {
  551. mpi Y;
  552. t_uint p[1];
  553. *p = ( z < 0 ) ? -z : z;
  554. Y.s = ( z < 0 ) ? -1 : 1;
  555. Y.n = 1;
  556. Y.p = p;
  557. return( mpi_cmp_mpi( X, &Y ) );
  558. }
  559. /*
  560. * Unsigned addition: X = |A| + |B| (HAC 14.7)
  561. */
  562. int mpi_add_abs( mpi *X, const mpi *A, const mpi *B )
  563. {
  564. int ret;
  565. size_t i, j;
  566. t_uint *o, *p, c;
  567. if( X == B )
  568. {
  569. const mpi *T = A; A = X; B = T;
  570. }
  571. if( X != A )
  572. MPI_CHK( mpi_copy( X, A ) );
  573. /*
  574. * X should always be positive as a result of unsigned additions.
  575. */
  576. X->s = 1;
  577. for( j = B->n; j > 0; j-- )
  578. if( B->p[j - 1] != 0 )
  579. break;
  580. MPI_CHK( mpi_grow( X, j ) );
  581. o = B->p; p = X->p; c = 0;
  582. for( i = 0; i < j; i++, o++, p++ )
  583. {
  584. *p += c; c = ( *p < c );
  585. *p += *o; c += ( *p < *o );
  586. }
  587. while( c != 0 )
  588. {
  589. if( i >= X->n )
  590. {
  591. MPI_CHK( mpi_grow( X, i + 1 ) );
  592. p = X->p + i;
  593. }
  594. *p += c; c = ( *p < c ); i++;
  595. }
  596. cleanup:
  597. return( ret );
  598. }
  599. /*
  600. * Helper for mpi substraction
  601. */
  602. static void mpi_sub_hlp( size_t n, t_uint *s, t_uint *d )
  603. {
  604. size_t i;
  605. t_uint c, z;
  606. for( i = c = 0; i < n; i++, s++, d++ )
  607. {
  608. z = ( *d < c ); *d -= c;
  609. c = ( *d < *s ) + z; *d -= *s;
  610. }
  611. while( c != 0 )
  612. {
  613. z = ( *d < c ); *d -= c;
  614. c = z; i++; d++;
  615. }
  616. }
  617. /*
  618. * Unsigned substraction: X = |A| - |B| (HAC 14.9)
  619. */
  620. int mpi_sub_abs( mpi *X, const mpi *A, const mpi *B )
  621. {
  622. mpi TB;
  623. int ret;
  624. size_t n;
  625. if( mpi_cmp_abs( A, B ) < 0 )
  626. return( POLARSSL_ERR_MPI_NEGATIVE_VALUE );
  627. mpi_init( &TB );
  628. if( X == B )
  629. {
  630. MPI_CHK( mpi_copy( &TB, B ) );
  631. B = &TB;
  632. }
  633. if( X != A )
  634. MPI_CHK( mpi_copy( X, A ) );
  635. /*
  636. * X should always be positive as a result of unsigned substractions.
  637. */
  638. X->s = 1;
  639. ret = 0;
  640. for( n = B->n; n > 0; n-- )
  641. if( B->p[n - 1] != 0 )
  642. break;
  643. mpi_sub_hlp( n, B->p, X->p );
  644. cleanup:
  645. mpi_free( &TB );
  646. return( ret );
  647. }
  648. /*
  649. * Signed addition: X = A + B
  650. */
  651. int mpi_add_mpi( mpi *X, const mpi *A, const mpi *B )
  652. {
  653. int ret, s = A->s;
  654. if( A->s * B->s < 0 )
  655. {
  656. if( mpi_cmp_abs( A, B ) >= 0 )
  657. {
  658. MPI_CHK( mpi_sub_abs( X, A, B ) );
  659. X->s = s;
  660. }
  661. else
  662. {
  663. MPI_CHK( mpi_sub_abs( X, B, A ) );
  664. X->s = -s;
  665. }
  666. }
  667. else
  668. {
  669. MPI_CHK( mpi_add_abs( X, A, B ) );
  670. X->s = s;
  671. }
  672. cleanup:
  673. return( ret );
  674. }
  675. /*
  676. * Signed substraction: X = A - B
  677. */
  678. int mpi_sub_mpi( mpi *X, const mpi *A, const mpi *B )
  679. {
  680. int ret, s = A->s;
  681. if( A->s * B->s > 0 )
  682. {
  683. if( mpi_cmp_abs( A, B ) >= 0 )
  684. {
  685. MPI_CHK( mpi_sub_abs( X, A, B ) );
  686. X->s = s;
  687. }
  688. else
  689. {
  690. MPI_CHK( mpi_sub_abs( X, B, A ) );
  691. X->s = -s;
  692. }
  693. }
  694. else
  695. {
  696. MPI_CHK( mpi_add_abs( X, A, B ) );
  697. X->s = s;
  698. }
  699. cleanup:
  700. return( ret );
  701. }
  702. /*
  703. * Signed addition: X = A + b
  704. */
  705. int mpi_add_int( mpi *X, const mpi *A, t_sint b )
  706. {
  707. mpi _B;
  708. t_uint p[1];
  709. p[0] = ( b < 0 ) ? -b : b;
  710. _B.s = ( b < 0 ) ? -1 : 1;
  711. _B.n = 1;
  712. _B.p = p;
  713. return( mpi_add_mpi( X, A, &_B ) );
  714. }
  715. /*
  716. * Signed substraction: X = A - b
  717. */
  718. int mpi_sub_int( mpi *X, const mpi *A, t_sint b )
  719. {
  720. mpi _B;
  721. t_uint p[1];
  722. p[0] = ( b < 0 ) ? -b : b;
  723. _B.s = ( b < 0 ) ? -1 : 1;
  724. _B.n = 1;
  725. _B.p = p;
  726. return( mpi_sub_mpi( X, A, &_B ) );
  727. }
  728. /*
  729. * Helper for mpi multiplication
  730. */
  731. static void mpi_mul_hlp( size_t i, t_uint *s, t_uint *d, t_uint b )
  732. {
  733. t_uint c = 0, t = 0;
  734. #if defined(MULADDC_HUIT)
  735. for( ; i >= 8; i -= 8 )
  736. {
  737. MULADDC_INIT
  738. MULADDC_HUIT
  739. MULADDC_STOP
  740. }
  741. for( ; i > 0; i-- )
  742. {
  743. MULADDC_INIT
  744. MULADDC_CORE
  745. MULADDC_STOP
  746. }
  747. #else
  748. for( ; i >= 16; i -= 16 )
  749. {
  750. MULADDC_INIT
  751. MULADDC_CORE MULADDC_CORE
  752. MULADDC_CORE MULADDC_CORE
  753. MULADDC_CORE MULADDC_CORE
  754. MULADDC_CORE MULADDC_CORE
  755. MULADDC_CORE MULADDC_CORE
  756. MULADDC_CORE MULADDC_CORE
  757. MULADDC_CORE MULADDC_CORE
  758. MULADDC_CORE MULADDC_CORE
  759. MULADDC_STOP
  760. }
  761. for( ; i >= 8; i -= 8 )
  762. {
  763. MULADDC_INIT
  764. MULADDC_CORE MULADDC_CORE
  765. MULADDC_CORE MULADDC_CORE
  766. MULADDC_CORE MULADDC_CORE
  767. MULADDC_CORE MULADDC_CORE
  768. MULADDC_STOP
  769. }
  770. for( ; i > 0; i-- )
  771. {
  772. MULADDC_INIT
  773. MULADDC_CORE
  774. MULADDC_STOP
  775. }
  776. #endif
  777. t++;
  778. do {
  779. *d += c; c = ( *d < c ); d++;
  780. }
  781. while( c != 0 );
  782. }
  783. /*
  784. * Baseline multiplication: X = A * B (HAC 14.12)
  785. */
  786. int mpi_mul_mpi( mpi *X, const mpi *A, const mpi *B )
  787. {
  788. int ret;
  789. size_t i, j;
  790. mpi TA, TB;
  791. mpi_init( &TA ); mpi_init( &TB );
  792. if( X == A ) { MPI_CHK( mpi_copy( &TA, A ) ); A = &TA; }
  793. if( X == B ) { MPI_CHK( mpi_copy( &TB, B ) ); B = &TB; }
  794. for( i = A->n; i > 0; i-- )
  795. if( A->p[i - 1] != 0 )
  796. break;
  797. for( j = B->n; j > 0; j-- )
  798. if( B->p[j - 1] != 0 )
  799. break;
  800. MPI_CHK( mpi_grow( X, i + j ) );
  801. MPI_CHK( mpi_lset( X, 0 ) );
  802. for( i++; j > 0; j-- )
  803. mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );
  804. X->s = A->s * B->s;
  805. cleanup:
  806. mpi_free( &TB ); mpi_free( &TA );
  807. return( ret );
  808. }
  809. /*
  810. * Baseline multiplication: X = A * b
  811. */
  812. int mpi_mul_int( mpi *X, const mpi *A, t_sint b )
  813. {
  814. mpi _B;
  815. t_uint p[1];
  816. _B.s = 1;
  817. _B.n = 1;
  818. _B.p = p;
  819. p[0] = b;
  820. return( mpi_mul_mpi( X, A, &_B ) );
  821. }
  822. /*
  823. * Division by mpi: A = Q * B + R (HAC 14.20)
  824. */
  825. int mpi_div_mpi( mpi *Q, mpi *R, const mpi *A, const mpi *B )
  826. {
  827. int ret;
  828. size_t i, n, t, k;
  829. mpi X, Y, Z, T1, T2;
  830. if( mpi_cmp_int( B, 0 ) == 0 )
  831. return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO );
  832. mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );
  833. mpi_init( &T1 ); mpi_init( &T2 );
  834. if( mpi_cmp_abs( A, B ) < 0 )
  835. {
  836. if( Q != NULL ) MPI_CHK( mpi_lset( Q, 0 ) );
  837. if( R != NULL ) MPI_CHK( mpi_copy( R, A ) );
  838. return( 0 );
  839. }
  840. MPI_CHK( mpi_copy( &X, A ) );
  841. MPI_CHK( mpi_copy( &Y, B ) );
  842. X.s = Y.s = 1;
  843. MPI_CHK( mpi_grow( &Z, A->n + 2 ) );
  844. MPI_CHK( mpi_lset( &Z, 0 ) );
  845. MPI_CHK( mpi_grow( &T1, 2 ) );
  846. MPI_CHK( mpi_grow( &T2, 3 ) );
  847. k = mpi_msb( &Y ) % biL;
  848. if( k < biL - 1 )
  849. {
  850. k = biL - 1 - k;
  851. MPI_CHK( mpi_shift_l( &X, k ) );
  852. MPI_CHK( mpi_shift_l( &Y, k ) );
  853. }
  854. else k = 0;
  855. n = X.n - 1;
  856. t = Y.n - 1;
  857. mpi_shift_l( &Y, biL * (n - t) );
  858. while( mpi_cmp_mpi( &X, &Y ) >= 0 )
  859. {
  860. Z.p[n - t]++;
  861. mpi_sub_mpi( &X, &X, &Y );
  862. }
  863. mpi_shift_r( &Y, biL * (n - t) );
  864. for( i = n; i > t ; i-- )
  865. {
  866. if( X.p[i] >= Y.p[t] )
  867. Z.p[i - t - 1] = ~0;
  868. else
  869. {
  870. #if defined(POLARSSL_HAVE_LONGLONG)
  871. t_dbl r;
  872. r = (t_dbl) X.p[i] << biL;
  873. r |= (t_dbl) X.p[i - 1];
  874. r /= Y.p[t];
  875. if( r > ((t_dbl) 1 << biL) - 1)
  876. r = ((t_dbl) 1 << biL) - 1;
  877. Z.p[i - t - 1] = (t_uint) r;
  878. #else
  879. /*
  880. * __udiv_qrnnd_c, from gmp/longlong.h
  881. */
  882. t_uint q0, q1, r0, r1;
  883. t_uint d0, d1, d, m;
  884. d = Y.p[t];
  885. d0 = ( d << biH ) >> biH;
  886. d1 = ( d >> biH );
  887. q1 = X.p[i] / d1;
  888. r1 = X.p[i] - d1 * q1;
  889. r1 <<= biH;
  890. r1 |= ( X.p[i - 1] >> biH );
  891. m = q1 * d0;
  892. if( r1 < m )
  893. {
  894. q1--, r1 += d;
  895. while( r1 >= d && r1 < m )
  896. q1--, r1 += d;
  897. }
  898. r1 -= m;
  899. q0 = r1 / d1;
  900. r0 = r1 - d1 * q0;
  901. r0 <<= biH;
  902. r0 |= ( X.p[i - 1] << biH ) >> biH;
  903. m = q0 * d0;
  904. if( r0 < m )
  905. {
  906. q0--, r0 += d;
  907. while( r0 >= d && r0 < m )
  908. q0--, r0 += d;
  909. }
  910. r0 -= m;
  911. Z.p[i - t - 1] = ( q1 << biH ) | q0;
  912. #endif
  913. }
  914. Z.p[i - t - 1]++;
  915. do
  916. {
  917. Z.p[i - t - 1]--;
  918. MPI_CHK( mpi_lset( &T1, 0 ) );
  919. T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
  920. T1.p[1] = Y.p[t];
  921. MPI_CHK( mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
  922. MPI_CHK( mpi_lset( &T2, 0 ) );
  923. T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
  924. T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
  925. T2.p[2] = X.p[i];
  926. }
  927. while( mpi_cmp_mpi( &T1, &T2 ) > 0 );
  928. MPI_CHK( mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
  929. MPI_CHK( mpi_shift_l( &T1, biL * (i - t - 1) ) );
  930. MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) );
  931. if( mpi_cmp_int( &X, 0 ) < 0 )
  932. {
  933. MPI_CHK( mpi_copy( &T1, &Y ) );
  934. MPI_CHK( mpi_shift_l( &T1, biL * (i - t - 1) ) );
  935. MPI_CHK( mpi_add_mpi( &X, &X, &T1 ) );
  936. Z.p[i - t - 1]--;
  937. }
  938. }
  939. if( Q != NULL )
  940. {
  941. mpi_copy( Q, &Z );
  942. Q->s = A->s * B->s;
  943. }
  944. if( R != NULL )
  945. {
  946. mpi_shift_r( &X, k );
  947. mpi_copy( R, &X );
  948. R->s = A->s;
  949. if( mpi_cmp_int( R, 0 ) == 0 )
  950. R->s = 1;
  951. }
  952. cleanup:
  953. mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );
  954. mpi_free( &T1 ); mpi_free( &T2 );
  955. return( ret );
  956. }
  957. /*
  958. * Division by int: A = Q * b + R
  959. *
  960. * Returns 0 if successful
  961. * 1 if memory allocation failed
  962. * POLARSSL_ERR_MPI_DIVISION_BY_ZERO if b == 0
  963. */
  964. int mpi_div_int( mpi *Q, mpi *R, const mpi *A, t_sint b )
  965. {
  966. mpi _B;
  967. t_uint p[1];
  968. p[0] = ( b < 0 ) ? -b : b;
  969. _B.s = ( b < 0 ) ? -1 : 1;
  970. _B.n = 1;
  971. _B.p = p;
  972. return( mpi_div_mpi( Q, R, A, &_B ) );
  973. }
  974. /*
  975. * Modulo: R = A mod B
  976. */
  977. int mpi_mod_mpi( mpi *R, const mpi *A, const mpi *B )
  978. {
  979. int ret;
  980. if( mpi_cmp_int( B, 0 ) < 0 )
  981. return POLARSSL_ERR_MPI_NEGATIVE_VALUE;
  982. MPI_CHK( mpi_div_mpi( NULL, R, A, B ) );
  983. while( mpi_cmp_int( R, 0 ) < 0 )
  984. MPI_CHK( mpi_add_mpi( R, R, B ) );
  985. while( mpi_cmp_mpi( R, B ) >= 0 )
  986. MPI_CHK( mpi_sub_mpi( R, R, B ) );
  987. cleanup:
  988. return( ret );
  989. }
  990. /*
  991. * Modulo: r = A mod b
  992. */
  993. int mpi_mod_int( t_uint *r, const mpi *A, t_sint b )
  994. {
  995. size_t i;
  996. t_uint x, y, z;
  997. if( b == 0 )
  998. return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO );
  999. if( b < 0 )
  1000. return POLARSSL_ERR_MPI_NEGATIVE_VALUE;
  1001. /*
  1002. * handle trivial cases
  1003. */
  1004. if( b == 1 )
  1005. {
  1006. *r = 0;
  1007. return( 0 );
  1008. }
  1009. if( b == 2 )
  1010. {
  1011. *r = A->p[0] & 1;
  1012. return( 0 );
  1013. }
  1014. /*
  1015. * general case
  1016. */
  1017. for( i = A->n, y = 0; i > 0; i-- )
  1018. {
  1019. x = A->p[i - 1];
  1020. y = ( y << biH ) | ( x >> biH );
  1021. z = y / b;
  1022. y -= z * b;
  1023. x <<= biH;
  1024. y = ( y << biH ) | ( x >> biH );
  1025. z = y / b;
  1026. y -= z * b;
  1027. }
  1028. /*
  1029. * If A is negative, then the current y represents a negative value.
  1030. * Flipping it to the positive side.
  1031. */
  1032. if( A->s < 0 && y != 0 )
  1033. y = b - y;
  1034. *r = y;
  1035. return( 0 );
  1036. }
  1037. /*
  1038. * Fast Montgomery initialization (thanks to Tom St Denis)
  1039. */
  1040. static void mpi_montg_init( t_uint *mm, const mpi *N )
  1041. {
  1042. t_uint x, m0 = N->p[0];
  1043. x = m0;
  1044. x += ( ( m0 + 2 ) & 4 ) << 1;
  1045. x *= ( 2 - ( m0 * x ) );
  1046. if( biL >= 16 ) x *= ( 2 - ( m0 * x ) );
  1047. if( biL >= 32 ) x *= ( 2 - ( m0 * x ) );
  1048. if( biL >= 64 ) x *= ( 2 - ( m0 * x ) );
  1049. *mm = ~x + 1;
  1050. }
  1051. /*
  1052. * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
  1053. */
  1054. static void mpi_montmul( mpi *A, const mpi *B, const mpi *N, t_uint mm, const mpi *T )
  1055. {
  1056. size_t i, n, m;
  1057. t_uint u0, u1, *d;
  1058. memset( T->p, 0, T->n * ciL );
  1059. d = T->p;
  1060. n = N->n;
  1061. m = ( B->n < n ) ? B->n : n;
  1062. for( i = 0; i < n; i++ )
  1063. {
  1064. /*
  1065. * T = (T + u0*B + u1*N) / 2^biL
  1066. */
  1067. u0 = A->p[i];
  1068. u1 = ( d[0] + u0 * B->p[0] ) * mm;
  1069. mpi_mul_hlp( m, B->p, d, u0 );
  1070. mpi_mul_hlp( n, N->p, d, u1 );
  1071. *d++ = u0; d[n + 1] = 0;
  1072. }
  1073. memcpy( A->p, d, (n + 1) * ciL );
  1074. if( mpi_cmp_abs( A, N ) >= 0 )
  1075. mpi_sub_hlp( n, N->p, A->p );
  1076. else
  1077. /* prevent timing attacks */
  1078. mpi_sub_hlp( n, A->p, T->p );
  1079. }
  1080. /*
  1081. * Montgomery reduction: A = A * R^-1 mod N
  1082. */
  1083. static void mpi_montred( mpi *A, const mpi *N, t_uint mm, const mpi *T )
  1084. {
  1085. t_uint z = 1;
  1086. mpi U;
  1087. U.n = U.s = z;
  1088. U.p = &z;
  1089. mpi_montmul( A, &U, N, mm, T );
  1090. }
  1091. /*
  1092. * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
  1093. */
  1094. int mpi_exp_mod( mpi *X, const mpi *A, const mpi *E, const mpi *N, mpi *_RR )
  1095. {
  1096. int ret;
  1097. size_t wbits, wsize, one = 1;
  1098. size_t i, j, nblimbs;
  1099. size_t bufsize, nbits;
  1100. t_uint ei, mm, state;
  1101. mpi RR, T, W[64];
  1102. if( mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
  1103. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1104. /*
  1105. * Init temps and window size
  1106. */
  1107. mpi_montg_init( &mm, N );
  1108. mpi_init( &RR ); mpi_init( &T );
  1109. memset( W, 0, sizeof( W ) );
  1110. i = mpi_msb( E );
  1111. wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
  1112. ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
  1113. j = N->n + 1;
  1114. MPI_CHK( mpi_grow( X, j ) );
  1115. MPI_CHK( mpi_grow( &W[1], j ) );
  1116. MPI_CHK( mpi_grow( &T, j * 2 ) );
  1117. /*
  1118. * If 1st call, pre-compute R^2 mod N
  1119. */
  1120. if( _RR == NULL || _RR->p == NULL )
  1121. {
  1122. MPI_CHK( mpi_lset( &RR, 1 ) );
  1123. MPI_CHK( mpi_shift_l( &RR, N->n * 2 * biL ) );
  1124. MPI_CHK( mpi_mod_mpi( &RR, &RR, N ) );
  1125. if( _RR != NULL )
  1126. memcpy( _RR, &RR, sizeof( mpi ) );
  1127. }
  1128. else
  1129. memcpy( &RR, _RR, sizeof( mpi ) );
  1130. /*
  1131. * W[1] = A * R^2 * R^-1 mod N = A * R mod N
  1132. */
  1133. if( mpi_cmp_mpi( A, N ) >= 0 )
  1134. mpi_mod_mpi( &W[1], A, N );
  1135. else mpi_copy( &W[1], A );
  1136. mpi_montmul( &W[1], &RR, N, mm, &T );
  1137. /*
  1138. * X = R^2 * R^-1 mod N = R mod N
  1139. */
  1140. MPI_CHK( mpi_copy( X, &RR ) );
  1141. mpi_montred( X, N, mm, &T );
  1142. if( wsize > 1 )
  1143. {
  1144. /*
  1145. * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
  1146. */
  1147. j = one << (wsize - 1);
  1148. MPI_CHK( mpi_grow( &W[j], N->n + 1 ) );
  1149. MPI_CHK( mpi_copy( &W[j], &W[1] ) );
  1150. for( i = 0; i < wsize - 1; i++ )
  1151. mpi_montmul( &W[j], &W[j], N, mm, &T );
  1152. /*
  1153. * W[i] = W[i - 1] * W[1]
  1154. */
  1155. for( i = j + 1; i < (one << wsize); i++ )
  1156. {
  1157. MPI_CHK( mpi_grow( &W[i], N->n + 1 ) );
  1158. MPI_CHK( mpi_copy( &W[i], &W[i - 1] ) );
  1159. mpi_montmul( &W[i], &W[1], N, mm, &T );
  1160. }
  1161. }
  1162. nblimbs = E->n;
  1163. bufsize = 0;
  1164. nbits = 0;
  1165. wbits = 0;
  1166. state = 0;
  1167. while( 1 )
  1168. {
  1169. if( bufsize == 0 )
  1170. {
  1171. if( nblimbs-- == 0 )
  1172. break;
  1173. bufsize = sizeof( t_uint ) << 3;
  1174. }
  1175. bufsize--;
  1176. ei = (E->p[nblimbs] >> bufsize) & 1;
  1177. /*
  1178. * skip leading 0s
  1179. */
  1180. if( ei == 0 && state == 0 )
  1181. continue;
  1182. if( ei == 0 && state == 1 )
  1183. {
  1184. /*
  1185. * out of window, square X
  1186. */
  1187. mpi_montmul( X, X, N, mm, &T );
  1188. continue;
  1189. }
  1190. /*
  1191. * add ei to current window
  1192. */
  1193. state = 2;
  1194. nbits++;
  1195. wbits |= (ei << (wsize - nbits));
  1196. if( nbits == wsize )
  1197. {
  1198. /*
  1199. * X = X^wsize R^-1 mod N
  1200. */
  1201. for( i = 0; i < wsize; i++ )
  1202. mpi_montmul( X, X, N, mm, &T );
  1203. /*
  1204. * X = X * W[wbits] R^-1 mod N
  1205. */
  1206. mpi_montmul( X, &W[wbits], N, mm, &T );
  1207. state--;
  1208. nbits = 0;
  1209. wbits = 0;
  1210. }
  1211. }
  1212. /*
  1213. * process the remaining bits
  1214. */
  1215. for( i = 0; i < nbits; i++ )
  1216. {
  1217. mpi_montmul( X, X, N, mm, &T );
  1218. wbits <<= 1;
  1219. if( (wbits & (one << wsize)) != 0 )
  1220. mpi_montmul( X, &W[1], N, mm, &T );
  1221. }
  1222. /*
  1223. * X = A^E * R * R^-1 mod N = A^E mod N
  1224. */
  1225. mpi_montred( X, N, mm, &T );
  1226. cleanup:
  1227. for( i = (one << (wsize - 1)); i < (one << wsize); i++ )
  1228. mpi_free( &W[i] );
  1229. mpi_free( &W[1] ); mpi_free( &T );
  1230. if( _RR == NULL )
  1231. mpi_free( &RR );
  1232. return( ret );
  1233. }
  1234. /*
  1235. * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
  1236. */
  1237. int mpi_gcd( mpi *G, const mpi *A, const mpi *B )
  1238. {
  1239. int ret;
  1240. size_t lz, lzt;
  1241. mpi TG, TA, TB;
  1242. mpi_init( &TG ); mpi_init( &TA ); mpi_init( &TB );
  1243. MPI_CHK( mpi_copy( &TA, A ) );
  1244. MPI_CHK( mpi_copy( &TB, B ) );
  1245. lz = mpi_lsb( &TA );
  1246. lzt = mpi_lsb( &TB );
  1247. if ( lzt < lz )
  1248. lz = lzt;
  1249. MPI_CHK( mpi_shift_r( &TA, lz ) );
  1250. MPI_CHK( mpi_shift_r( &TB, lz ) );
  1251. TA.s = TB.s = 1;
  1252. while( mpi_cmp_int( &TA, 0 ) != 0 )
  1253. {
  1254. MPI_CHK( mpi_shift_r( &TA, mpi_lsb( &TA ) ) );
  1255. MPI_CHK( mpi_shift_r( &TB, mpi_lsb( &TB ) ) );
  1256. if( mpi_cmp_mpi( &TA, &TB ) >= 0 )
  1257. {
  1258. MPI_CHK( mpi_sub_abs( &TA, &TA, &TB ) );
  1259. MPI_CHK( mpi_shift_r( &TA, 1 ) );
  1260. }
  1261. else
  1262. {
  1263. MPI_CHK( mpi_sub_abs( &TB, &TB, &TA ) );
  1264. MPI_CHK( mpi_shift_r( &TB, 1 ) );
  1265. }
  1266. }
  1267. MPI_CHK( mpi_shift_l( &TB, lz ) );
  1268. MPI_CHK( mpi_copy( G, &TB ) );
  1269. cleanup:
  1270. mpi_free( &TG ); mpi_free( &TA ); mpi_free( &TB );
  1271. return( ret );
  1272. }
  1273. int mpi_fill_random( mpi *X, size_t size, int (*f_rng)(void *), void *p_rng )
  1274. {
  1275. int ret;
  1276. size_t k;
  1277. unsigned char *p;
  1278. MPI_CHK( mpi_grow( X, size ) );
  1279. MPI_CHK( mpi_lset( X, 0 ) );
  1280. p = (unsigned char *) X->p;
  1281. for( k = 0; k < X->n * ciL; k++ )
  1282. *p++ = (unsigned char) f_rng( p_rng );
  1283. cleanup:
  1284. return( ret );
  1285. }
  1286. #if defined(POLARSSL_GENPRIME)
  1287. /*
  1288. * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
  1289. */
  1290. int mpi_inv_mod( mpi *X, const mpi *A, const mpi *N )
  1291. {
  1292. int ret;
  1293. mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
  1294. if( mpi_cmp_int( N, 0 ) <= 0 )
  1295. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1296. mpi_init( &TA ); mpi_init( &TU ); mpi_init( &U1 ); mpi_init( &U2 );
  1297. mpi_init( &G ); mpi_init( &TB ); mpi_init( &TV );
  1298. mpi_init( &V1 ); mpi_init( &V2 );
  1299. MPI_CHK( mpi_gcd( &G, A, N ) );
  1300. if( mpi_cmp_int( &G, 1 ) != 0 )
  1301. {
  1302. ret = POLARSSL_ERR_MPI_NOT_ACCEPTABLE;
  1303. goto cleanup;
  1304. }
  1305. MPI_CHK( mpi_mod_mpi( &TA, A, N ) );
  1306. MPI_CHK( mpi_copy( &TU, &TA ) );
  1307. MPI_CHK( mpi_copy( &TB, N ) );
  1308. MPI_CHK( mpi_copy( &TV, N ) );
  1309. MPI_CHK( mpi_lset( &U1, 1 ) );
  1310. MPI_CHK( mpi_lset( &U2, 0 ) );
  1311. MPI_CHK( mpi_lset( &V1, 0 ) );
  1312. MPI_CHK( mpi_lset( &V2, 1 ) );
  1313. do
  1314. {
  1315. while( ( TU.p[0] & 1 ) == 0 )
  1316. {
  1317. MPI_CHK( mpi_shift_r( &TU, 1 ) );
  1318. if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
  1319. {
  1320. MPI_CHK( mpi_add_mpi( &U1, &U1, &TB ) );
  1321. MPI_CHK( mpi_sub_mpi( &U2, &U2, &TA ) );
  1322. }
  1323. MPI_CHK( mpi_shift_r( &U1, 1 ) );
  1324. MPI_CHK( mpi_shift_r( &U2, 1 ) );
  1325. }
  1326. while( ( TV.p[0] & 1 ) == 0 )
  1327. {
  1328. MPI_CHK( mpi_shift_r( &TV, 1 ) );
  1329. if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
  1330. {
  1331. MPI_CHK( mpi_add_mpi( &V1, &V1, &TB ) );
  1332. MPI_CHK( mpi_sub_mpi( &V2, &V2, &TA ) );
  1333. }
  1334. MPI_CHK( mpi_shift_r( &V1, 1 ) );
  1335. MPI_CHK( mpi_shift_r( &V2, 1 ) );
  1336. }
  1337. if( mpi_cmp_mpi( &TU, &TV ) >= 0 )
  1338. {
  1339. MPI_CHK( mpi_sub_mpi( &TU, &TU, &TV ) );
  1340. MPI_CHK( mpi_sub_mpi( &U1, &U1, &V1 ) );
  1341. MPI_CHK( mpi_sub_mpi( &U2, &U2, &V2 ) );
  1342. }
  1343. else
  1344. {
  1345. MPI_CHK( mpi_sub_mpi( &TV, &TV, &TU ) );
  1346. MPI_CHK( mpi_sub_mpi( &V1, &V1, &U1 ) );
  1347. MPI_CHK( mpi_sub_mpi( &V2, &V2, &U2 ) );
  1348. }
  1349. }
  1350. while( mpi_cmp_int( &TU, 0 ) != 0 );
  1351. while( mpi_cmp_int( &V1, 0 ) < 0 )
  1352. MPI_CHK( mpi_add_mpi( &V1, &V1, N ) );
  1353. while( mpi_cmp_mpi( &V1, N ) >= 0 )
  1354. MPI_CHK( mpi_sub_mpi( &V1, &V1, N ) );
  1355. MPI_CHK( mpi_copy( X, &V1 ) );
  1356. cleanup:
  1357. mpi_free( &TA ); mpi_free( &TU ); mpi_free( &U1 ); mpi_free( &U2 );
  1358. mpi_free( &G ); mpi_free( &TB ); mpi_free( &TV );
  1359. mpi_free( &V1 ); mpi_free( &V2 );
  1360. return( ret );
  1361. }
  1362. static const int small_prime[] =
  1363. {
  1364. 3, 5, 7, 11, 13, 17, 19, 23,
  1365. 29, 31, 37, 41, 43, 47, 53, 59,
  1366. 61, 67, 71, 73, 79, 83, 89, 97,
  1367. 101, 103, 107, 109, 113, 127, 131, 137,
  1368. 139, 149, 151, 157, 163, 167, 173, 179,
  1369. 181, 191, 193, 197, 199, 211, 223, 227,
  1370. 229, 233, 239, 241, 251, 257, 263, 269,
  1371. 271, 277, 281, 283, 293, 307, 311, 313,
  1372. 317, 331, 337, 347, 349, 353, 359, 367,
  1373. 373, 379, 383, 389, 397, 401, 409, 419,
  1374. 421, 431, 433, 439, 443, 449, 457, 461,
  1375. 463, 467, 479, 487, 491, 499, 503, 509,
  1376. 521, 523, 541, 547, 557, 563, 569, 571,
  1377. 577, 587, 593, 599, 601, 607, 613, 617,
  1378. 619, 631, 641, 643, 647, 653, 659, 661,
  1379. 673, 677, 683, 691, 701, 709, 719, 727,
  1380. 733, 739, 743, 751, 757, 761, 769, 773,
  1381. 787, 797, 809, 811, 821, 823, 827, 829,
  1382. 839, 853, 857, 859, 863, 877, 881, 883,
  1383. 887, 907, 911, 919, 929, 937, 941, 947,
  1384. 953, 967, 971, 977, 983, 991, 997, -103
  1385. };
  1386. /*
  1387. * Miller-Rabin primality test (HAC 4.24)
  1388. */
  1389. int mpi_is_prime( mpi *X, int (*f_rng)(void *), void *p_rng )
  1390. {
  1391. int ret, xs;
  1392. size_t i, j, n, s;
  1393. mpi W, R, T, A, RR;
  1394. if( mpi_cmp_int( X, 0 ) == 0 ||
  1395. mpi_cmp_int( X, 1 ) == 0 )
  1396. return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );
  1397. if( mpi_cmp_int( X, 2 ) == 0 )
  1398. return( 0 );
  1399. mpi_init( &W ); mpi_init( &R ); mpi_init( &T ); mpi_init( &A );
  1400. mpi_init( &RR );
  1401. xs = X->s; X->s = 1;
  1402. /*
  1403. * test trivial factors first
  1404. */
  1405. if( ( X->p[0] & 1 ) == 0 )
  1406. return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );
  1407. for( i = 0; small_prime[i] > 0; i++ )
  1408. {
  1409. t_uint r;
  1410. if( mpi_cmp_int( X, small_prime[i] ) <= 0 )
  1411. return( 0 );
  1412. MPI_CHK( mpi_mod_int( &r, X, small_prime[i] ) );
  1413. if( r == 0 )
  1414. return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );
  1415. }
  1416. /*
  1417. * W = |X| - 1
  1418. * R = W >> lsb( W )
  1419. */
  1420. MPI_CHK( mpi_sub_int( &W, X, 1 ) );
  1421. s = mpi_lsb( &W );
  1422. MPI_CHK( mpi_copy( &R, &W ) );
  1423. MPI_CHK( mpi_shift_r( &R, s ) );
  1424. i = mpi_msb( X );
  1425. /*
  1426. * HAC, table 4.4
  1427. */
  1428. n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
  1429. ( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
  1430. ( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
  1431. for( i = 0; i < n; i++ )
  1432. {
  1433. /*
  1434. * pick a random A, 1 < A < |X| - 1
  1435. */
  1436. mpi_fill_random( &A, X->n, f_rng, p_rng );
  1437. if( mpi_cmp_mpi( &A, &W ) >= 0 )
  1438. {
  1439. j = mpi_msb( &A ) - mpi_msb( &W );
  1440. MPI_CHK( mpi_shift_r( &A, j + 1 ) );
  1441. }
  1442. A.p[0] |= 3;
  1443. /*
  1444. * A = A^R mod |X|
  1445. */
  1446. MPI_CHK( mpi_exp_mod( &A, &A, &R, X, &RR ) );
  1447. if( mpi_cmp_mpi( &A, &W ) == 0 ||
  1448. mpi_cmp_int( &A, 1 ) == 0 )
  1449. continue;
  1450. j = 1;
  1451. while( j < s && mpi_cmp_mpi( &A, &W ) != 0 )
  1452. {
  1453. /*
  1454. * A = A * A mod |X|
  1455. */
  1456. MPI_CHK( mpi_mul_mpi( &T, &A, &A ) );
  1457. MPI_CHK( mpi_mod_mpi( &A, &T, X ) );
  1458. if( mpi_cmp_int( &A, 1 ) == 0 )
  1459. break;
  1460. j++;
  1461. }
  1462. /*
  1463. * not prime if A != |X| - 1 or A == 1
  1464. */
  1465. if( mpi_cmp_mpi( &A, &W ) != 0 ||
  1466. mpi_cmp_int( &A, 1 ) == 0 )
  1467. {
  1468. ret = POLARSSL_ERR_MPI_NOT_ACCEPTABLE;
  1469. break;
  1470. }
  1471. }
  1472. cleanup:
  1473. X->s = xs;
  1474. mpi_free( &W ); mpi_free( &R ); mpi_free( &T ); mpi_free( &A );
  1475. mpi_free( &RR );
  1476. return( ret );
  1477. }
  1478. /*
  1479. * Prime number generation
  1480. */
  1481. int mpi_gen_prime( mpi *X, size_t nbits, int dh_flag,
  1482. int (*f_rng)(void *), void *p_rng )
  1483. {
  1484. int ret;
  1485. size_t k, n;
  1486. mpi Y;
  1487. if( nbits < 3 || nbits > 4096 )
  1488. return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );
  1489. mpi_init( &Y );
  1490. n = BITS_TO_LIMBS( nbits );
  1491. mpi_fill_random( X, n, f_rng, p_rng );
  1492. k = mpi_msb( X );
  1493. if( k < nbits ) MPI_CHK( mpi_shift_l( X, nbits - k ) );
  1494. if( k > nbits ) MPI_CHK( mpi_shift_r( X, k - nbits ) );
  1495. X->p[0] |= 3;
  1496. if( dh_flag == 0 )
  1497. {
  1498. while( ( ret = mpi_is_prime( X, f_rng, p_rng ) ) != 0 )
  1499. {
  1500. if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )
  1501. goto cleanup;
  1502. MPI_CHK( mpi_add_int( X, X, 2 ) );
  1503. }
  1504. }
  1505. else
  1506. {
  1507. MPI_CHK( mpi_sub_int( &Y, X, 1 ) );
  1508. MPI_CHK( mpi_shift_r( &Y, 1 ) );
  1509. while( 1 )
  1510. {
  1511. if( ( ret = mpi_is_prime( X, f_rng, p_rng ) ) == 0 )
  1512. {
  1513. if( ( ret = mpi_is_prime( &Y, f_rng, p_rng ) ) == 0 )
  1514. break;
  1515. if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )
  1516. goto cleanup;
  1517. }
  1518. if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )
  1519. goto cleanup;
  1520. MPI_CHK( mpi_add_int( &Y, X, 1 ) );
  1521. MPI_CHK( mpi_add_int( X, X, 2 ) );
  1522. MPI_CHK( mpi_shift_r( &Y, 1 ) );
  1523. }
  1524. }
  1525. cleanup:
  1526. mpi_free( &Y );
  1527. return( ret );
  1528. }
  1529. #endif
  1530. #if defined(POLARSSL_SELF_TEST)
  1531. #define GCD_PAIR_COUNT 3
  1532. static const int gcd_pairs[GCD_PAIR_COUNT][3] =
  1533. {
  1534. { 693, 609, 21 },
  1535. { 1764, 868, 28 },
  1536. { 768454923, 542167814, 1 }
  1537. };
  1538. /*
  1539. * Checkup routine
  1540. */
  1541. int mpi_self_test( int verbose )
  1542. {
  1543. int ret, i;
  1544. mpi A, E, N, X, Y, U, V;
  1545. mpi_init( &A ); mpi_init( &E ); mpi_init( &N ); mpi_init( &X );
  1546. mpi_init( &Y ); mpi_init( &U ); mpi_init( &V );
  1547. MPI_CHK( mpi_read_string( &A, 16,
  1548. "EFE021C2645FD1DC586E69184AF4A31E" \
  1549. "D5F53E93B5F123FA41680867BA110131" \
  1550. "944FE7952E2517337780CB0DB80E61AA" \
  1551. "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
  1552. MPI_CHK( mpi_read_string( &E, 16,
  1553. "B2E7EFD37075B9F03FF989C7C5051C20" \
  1554. "34D2A323810251127E7BF8625A4F49A5" \
  1555. "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
  1556. "5B5C25763222FEFCCFC38B832366C29E" ) );
  1557. MPI_CHK( mpi_read_string( &N, 16,
  1558. "0066A198186C18C10B2F5ED9B522752A" \
  1559. "9830B69916E535C8F047518A889A43A5" \
  1560. "94B6BED27A168D31D4A52F88925AA8F5" ) );
  1561. MPI_CHK( mpi_mul_mpi( &X, &A, &N ) );
  1562. MPI_CHK( mpi_read_string( &U, 16,
  1563. "602AB7ECA597A3D6B56FF9829A5E8B85" \
  1564. "9E857EA95A03512E2BAE7391688D264A" \
  1565. "A5663B0341DB9CCFD2C4C5F421FEC814" \
  1566. "8001B72E848A38CAE1C65F78E56ABDEF" \
  1567. "E12D3C039B8A02D6BE593F0BBBDA56F1" \
  1568. "ECF677152EF804370C1A305CAF3B5BF1" \
  1569. "30879B56C61DE584A0F53A2447A51E" ) );
  1570. if( verbose != 0 )
  1571. printf( " MPI test #1 (mul_mpi): " );
  1572. if( mpi_cmp_mpi( &X, &U ) != 0 )
  1573. {
  1574. if( verbose != 0 )
  1575. printf( "failed\n" );
  1576. return( 1 );
  1577. }
  1578. if( verbose != 0 )
  1579. printf( "passed\n" );
  1580. MPI_CHK( mpi_div_mpi( &X, &Y, &A, &N ) );
  1581. MPI_CHK( mpi_read_string( &U, 16,
  1582. "256567336059E52CAE22925474705F39A94" ) );
  1583. MPI_CHK( mpi_read_string( &V, 16,
  1584. "6613F26162223DF488E9CD48CC132C7A" \
  1585. "0AC93C701B001B092E4E5B9F73BCD27B" \
  1586. "9EE50D0657C77F374E903CDFA4C642" ) );
  1587. if( verbose != 0 )
  1588. printf( " MPI test #2 (div_mpi): " );
  1589. if( mpi_cmp_mpi( &X, &U ) != 0 ||
  1590. mpi_cmp_mpi( &Y, &V ) != 0 )
  1591. {
  1592. if( verbose != 0 )
  1593. printf( "failed\n" );
  1594. return( 1 );
  1595. }
  1596. if( verbose != 0 )
  1597. printf( "passed\n" );
  1598. MPI_CHK( mpi_exp_mod( &X, &A, &E, &N, NULL ) );
  1599. MPI_CHK( mpi_read_string( &U, 16,
  1600. "36E139AEA55215609D2816998ED020BB" \
  1601. "BD96C37890F65171D948E9BC7CBAA4D9" \
  1602. "325D24D6A3C12710F10A09FA08AB87" ) );
  1603. if( verbose != 0 )
  1604. printf( " MPI test #3 (exp_mod): " );
  1605. if( mpi_cmp_mpi( &X, &U ) != 0 )
  1606. {
  1607. if( verbose != 0 )
  1608. printf( "failed\n" );
  1609. return( 1 );
  1610. }
  1611. if( verbose != 0 )
  1612. printf( "passed\n" );
  1613. #if defined(POLARSSL_GENPRIME)
  1614. MPI_CHK( mpi_inv_mod( &X, &A, &N ) );
  1615. MPI_CHK( mpi_read_string( &U, 16,
  1616. "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
  1617. "C3DBA76456363A10869622EAC2DD84EC" \
  1618. "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
  1619. if( verbose != 0 )
  1620. printf( " MPI test #4 (inv_mod): " );
  1621. if( mpi_cmp_mpi( &X, &U ) != 0 )
  1622. {
  1623. if( verbose != 0 )
  1624. printf( "failed\n" );
  1625. return( 1 );
  1626. }
  1627. if( verbose != 0 )
  1628. printf( "passed\n" );
  1629. #endif
  1630. if( verbose != 0 )
  1631. printf( " MPI test #5 (simple gcd): " );
  1632. for ( i = 0; i < GCD_PAIR_COUNT; i++)
  1633. {
  1634. MPI_CHK( mpi_lset( &X, gcd_pairs[i][0] ) );
  1635. MPI_CHK( mpi_lset( &Y, gcd_pairs[i][1] ) );
  1636. MPI_CHK( mpi_gcd( &A, &X, &Y ) );
  1637. if( mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
  1638. {
  1639. if( verbose != 0 )
  1640. printf( "failed at %d\n", i );
  1641. return( 1 );
  1642. }
  1643. }
  1644. if( verbose != 0 )
  1645. printf( "passed\n" );
  1646. cleanup:
  1647. if( ret != 0 && verbose != 0 )
  1648. printf( "Unexpected error, return code = %08X\n", ret );
  1649. mpi_free( &A ); mpi_free( &E ); mpi_free( &N ); mpi_free( &X );
  1650. mpi_free( &Y ); mpi_free( &U ); mpi_free( &V );
  1651. if( verbose != 0 )
  1652. printf( "\n" );
  1653. return( ret );
  1654. }
  1655. #endif
  1656. #endif