| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245 | /** *  \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion * *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved *  SPDX-License-Identifier: Apache-2.0 * *  Licensed under the Apache License, Version 2.0 (the "License"); you may *  not use this file except in compliance with the License. *  You may obtain a copy of the License at * *  http://www.apache.org/licenses/LICENSE-2.0 * *  Unless required by applicable law or agreed to in writing, software *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *  See the License for the specific language governing permissions and *  limitations under the License. * *  This file is part of mbed TLS (https://tls.mbed.org) *//* *  The HAVEGE RNG was designed by Andre Seznec in 2002. * *  http://www.irisa.fr/caps/projects/hipsor/publi.php * *  Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr */#if !defined(MBEDTLS_CONFIG_FILE)#include "mbedtls/config.h"#else#include MBEDTLS_CONFIG_FILE#endif#if defined(MBEDTLS_HAVEGE_C)#include "mbedtls/havege.h"#include "mbedtls/timing.h"#include <string.h>/* Implementation that should never be optimized out by the compiler */static void mbedtls_zeroize( void *v, size_t n ) {    volatile unsigned char *p = v; while( n-- ) *p++ = 0;}/* ------------------------------------------------------------------------ * On average, one iteration accesses two 8-word blocks in the havege WALK * table, and generates 16 words in the RES array. * * The data read in the WALK table is updated and permuted after each use. * The result of the hardware clock counter read is used  for this update. * * 25 conditional tests are present.  The conditional tests are grouped in * two nested  groups of 12 conditional tests and 1 test that controls the * permutation; on average, there should be 6 tests executed and 3 of them * should be mispredicted. * ------------------------------------------------------------------------ */#define SWAP(X,Y) { int *T = X; X = Y; Y = T; }#define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;#define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;#define TST1_LEAVE U1++; }#define TST2_LEAVE U2++; }#define ONE_ITERATION                                   \                                                        \    PTEST = PT1 >> 20;                                  \                                                        \    TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \    TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \    TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \                                                        \    TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \    TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \    TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \                                                        \    PTX = (PT1 >> 18) & 7;                              \    PT1 &= 0x1FFF;                                      \    PT2 &= 0x1FFF;                                      \    CLK = (int) mbedtls_timing_hardclock();                            \                                                        \    i = 0;                                              \    A = &WALK[PT1    ]; RES[i++] ^= *A;                 \    B = &WALK[PT2    ]; RES[i++] ^= *B;                 \    C = &WALK[PT1 ^ 1]; RES[i++] ^= *C;                 \    D = &WALK[PT2 ^ 4]; RES[i++] ^= *D;                 \                                                        \    IN = (*A >> (1)) ^ (*A << (31)) ^ CLK;              \    *A = (*B >> (2)) ^ (*B << (30)) ^ CLK;              \    *B = IN ^ U1;                                       \    *C = (*C >> (3)) ^ (*C << (29)) ^ CLK;              \    *D = (*D >> (4)) ^ (*D << (28)) ^ CLK;              \                                                        \    A = &WALK[PT1 ^ 2]; RES[i++] ^= *A;                 \    B = &WALK[PT2 ^ 2]; RES[i++] ^= *B;                 \    C = &WALK[PT1 ^ 3]; RES[i++] ^= *C;                 \    D = &WALK[PT2 ^ 6]; RES[i++] ^= *D;                 \                                                        \    if( PTEST & 1 ) SWAP( A, C );                       \                                                        \    IN = (*A >> (5)) ^ (*A << (27)) ^ CLK;              \    *A = (*B >> (6)) ^ (*B << (26)) ^ CLK;              \    *B = IN; CLK = (int) mbedtls_timing_hardclock();                   \    *C = (*C >> (7)) ^ (*C << (25)) ^ CLK;              \    *D = (*D >> (8)) ^ (*D << (24)) ^ CLK;              \                                                        \    A = &WALK[PT1 ^ 4];                                 \    B = &WALK[PT2 ^ 1];                                 \                                                        \    PTEST = PT2 >> 1;                                   \                                                        \    PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]);   \    PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8);  \    PTY = (PT2 >> 10) & 7;                              \                                                        \    TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \    TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \    TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \                                                        \    TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \    TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \    TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \                                                        \    C = &WALK[PT1 ^ 5];                                 \    D = &WALK[PT2 ^ 5];                                 \                                                        \    RES[i++] ^= *A;                                     \    RES[i++] ^= *B;                                     \    RES[i++] ^= *C;                                     \    RES[i++] ^= *D;                                     \                                                        \    IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK;             \    *A = (*B >> (10)) ^ (*B << (22)) ^ CLK;             \    *B = IN ^ U2;                                       \    *C = (*C >> (11)) ^ (*C << (21)) ^ CLK;             \    *D = (*D >> (12)) ^ (*D << (20)) ^ CLK;             \                                                        \    A = &WALK[PT1 ^ 6]; RES[i++] ^= *A;                 \    B = &WALK[PT2 ^ 3]; RES[i++] ^= *B;                 \    C = &WALK[PT1 ^ 7]; RES[i++] ^= *C;                 \    D = &WALK[PT2 ^ 7]; RES[i++] ^= *D;                 \                                                        \    IN = (*A >> (13)) ^ (*A << (19)) ^ CLK;             \    *A = (*B >> (14)) ^ (*B << (18)) ^ CLK;             \    *B = IN;                                            \    *C = (*C >> (15)) ^ (*C << (17)) ^ CLK;             \    *D = (*D >> (16)) ^ (*D << (16)) ^ CLK;             \                                                        \    PT1 = ( RES[( i - 8 ) ^ PTX] ^                      \            WALK[PT1 ^ PTX ^ 7] ) & (~1);               \    PT1 ^= (PT2 ^ 0x10) & 0x10;                         \                                                        \    for( n++, i = 0; i < 16; i++ )                      \        hs->pool[n % MBEDTLS_HAVEGE_COLLECT_SIZE] ^= RES[i];/* * Entropy gathering function */static void havege_fill( mbedtls_havege_state *hs ){    int i, n = 0;    int  U1,  U2, *A, *B, *C, *D;    int PT1, PT2, *WALK, RES[16];    int PTX, PTY, CLK, PTEST, IN;    WALK = hs->WALK;    PT1  = hs->PT1;    PT2  = hs->PT2;    PTX  = U1 = 0;    PTY  = U2 = 0;    (void)PTX;    memset( RES, 0, sizeof( RES ) );    while( n < MBEDTLS_HAVEGE_COLLECT_SIZE * 4 )    {        ONE_ITERATION        ONE_ITERATION        ONE_ITERATION        ONE_ITERATION    }    hs->PT1 = PT1;    hs->PT2 = PT2;    hs->offset[0] = 0;    hs->offset[1] = MBEDTLS_HAVEGE_COLLECT_SIZE / 2;}/* * HAVEGE initialization */void mbedtls_havege_init( mbedtls_havege_state *hs ){    memset( hs, 0, sizeof( mbedtls_havege_state ) );    havege_fill( hs );}void mbedtls_havege_free( mbedtls_havege_state *hs ){    if( hs == NULL )        return;    mbedtls_zeroize( hs, sizeof( mbedtls_havege_state ) );}/* * HAVEGE rand function */int mbedtls_havege_random( void *p_rng, unsigned char *buf, size_t len ){    int val;    size_t use_len;    mbedtls_havege_state *hs = (mbedtls_havege_state *) p_rng;    unsigned char *p = buf;    while( len > 0 )    {        use_len = len;        if( use_len > sizeof(int) )            use_len = sizeof(int);        if( hs->offset[1] >= MBEDTLS_HAVEGE_COLLECT_SIZE )            havege_fill( hs );        val  = hs->pool[hs->offset[0]++];        val ^= hs->pool[hs->offset[1]++];        memcpy( p, &val, use_len );        len -= use_len;        p += use_len;    }    return( 0 );}#endif /* MBEDTLS_HAVEGE_C */
 |