| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 | 
							- /**
 
-  * \file ecp_internal.h
 
-  *
 
-  * \brief Function declarations for alternative implementation of elliptic curve
 
-  * point arithmetic.
 
-  *
 
-  *  Copyright (C) 2016, ARM Limited, All Rights Reserved
 
-  *  SPDX-License-Identifier: Apache-2.0
 
-  *
 
-  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 
-  *  not use this file except in compliance with the License.
 
-  *  You may obtain a copy of the License at
 
-  *
 
-  *  http://www.apache.org/licenses/LICENSE-2.0
 
-  *
 
-  *  Unless required by applicable law or agreed to in writing, software
 
-  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 
-  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-  *  See the License for the specific language governing permissions and
 
-  *  limitations under the License.
 
-  *
 
-  *  This file is part of mbed TLS (https://tls.mbed.org)
 
-  */
 
- /*
 
-  * References:
 
-  *
 
-  * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records.
 
-  *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf>
 
-  *
 
-  * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
 
-  *     for elliptic curve cryptosystems. In : Cryptographic Hardware and
 
-  *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
 
-  *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
 
-  *
 
-  * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
 
-  *     render ECC resistant against Side Channel Attacks. IACR Cryptology
 
-  *     ePrint Archive, 2004, vol. 2004, p. 342.
 
-  *     <http://eprint.iacr.org/2004/342.pdf>
 
-  *
 
-  * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters.
 
-  *     <http://www.secg.org/sec2-v2.pdf>
 
-  *
 
-  * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic
 
-  *     Curve Cryptography.
 
-  *
 
-  * [6] Digital Signature Standard (DSS), FIPS 186-4.
 
-  *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf>
 
-  *
 
-  * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer 
 
-  *     Security (TLS), RFC 4492.
 
-  *     <https://tools.ietf.org/search/rfc4492>
 
-  *
 
-  * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html>
 
-  *
 
-  * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory.
 
-  *     Springer Science & Business Media, 1 Aug 2000
 
-  */
 
- #ifndef MBEDTLS_ECP_INTERNAL_H
 
- #define MBEDTLS_ECP_INTERNAL_H
 
- #if defined(MBEDTLS_ECP_INTERNAL_ALT)
 
- /**
 
-  * \brief           Indicate if the Elliptic Curve Point module extension can
 
-  *                  handle the group.
 
-  *
 
-  * \param grp       The pointer to the elliptic curve group that will be the
 
-  *                  basis of the cryptographic computations.
 
-  *
 
-  * \return          Non-zero if successful.
 
-  */
 
- unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );
 
- /**
 
-  * \brief           Initialise the Elliptic Curve Point module extension.
 
-  *
 
-  *                  If mbedtls_internal_ecp_grp_capable returns true for a
 
-  *                  group, this function has to be able to initialise the
 
-  *                  module for it.
 
-  *
 
-  *                  This module can be a driver to a crypto hardware
 
-  *                  accelerator, for which this could be an initialise function.
 
-  *
 
-  * \param grp       The pointer to the group the module needs to be
 
-  *                  initialised for.
 
-  *
 
-  * \return          0 if successful.
 
-  */
 
- int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );
 
- /**
 
-  * \brief           Frees and deallocates the Elliptic Curve Point module
 
-  *                  extension.
 
-  *
 
-  * \param grp       The pointer to the group the module was initialised for.
 
-  */
 
- void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );
 
- #if defined(ECP_SHORTWEIERSTRASS)
 
- #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)
 
- /**
 
-  * \brief           Randomize jacobian coordinates:
 
-  *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l.
 
-  *
 
-  * \param grp       Pointer to the group representing the curve.
 
-  *
 
-  * \param pt        The point on the curve to be randomised, given with Jacobian
 
-  *                  coordinates.
 
-  *
 
-  * \param f_rng     A function pointer to the random number generator.
 
-  *
 
-  * \param p_rng     A pointer to the random number generator state.
 
-  *
 
-  * \return          0 if successful.
 
-  */
 
- int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),
 
-         void *p_rng );
 
- #endif
 
- #if defined(MBEDTLS_ECP_ADD_MIXED_ALT)
 
- /**
 
-  * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates.
 
-  *
 
-  *                  The coordinates of Q must be normalized (= affine),
 
-  *                  but those of P don't need to. R is not normalized.
 
-  *
 
-  *                  This function is used only as a subrutine of
 
-  *                  ecp_mul_comb().
 
-  *
 
-  *                  Special cases: (1) P or Q is zero, (2) R is zero,
 
-  *                      (3) P == Q.
 
-  *                  None of these cases can happen as intermediate step in
 
-  *                  ecp_mul_comb():
 
-  *                      - at each step, P, Q and R are multiples of the base
 
-  *                      point, the factor being less than its order, so none of
 
-  *                      them is zero;
 
-  *                      - Q is an odd multiple of the base point, P an even
 
-  *                      multiple, due to the choice of precomputed points in the
 
-  *                      modified comb method.
 
-  *                  So branches for these cases do not leak secret information.
 
-  *
 
-  *                  We accept Q->Z being unset (saving memory in tables) as
 
-  *                  meaning 1.
 
-  *
 
-  *                  Cost in field operations if done by [5] 3.22:
 
-  *                      1A := 8M + 3S
 
-  *
 
-  * \param grp       Pointer to the group representing the curve.
 
-  *
 
-  * \param R         Pointer to a point structure to hold the result.
 
-  *
 
-  * \param P         Pointer to the first summand, given with Jacobian
 
-  *                  coordinates
 
-  *
 
-  * \param Q         Pointer to the second summand, given with affine
 
-  *                  coordinates.
 
-  *
 
-  * \return          0 if successful.
 
-  */
 
- int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *R, const mbedtls_ecp_point *P,
 
-         const mbedtls_ecp_point *Q );
 
- #endif
 
- /**
 
-  * \brief           Point doubling R = 2 P, Jacobian coordinates.
 
-  *
 
-  *                  Cost:   1D := 3M + 4S    (A ==  0)
 
-  *                          4M + 4S          (A == -3)
 
-  *                          3M + 6S + 1a     otherwise
 
-  *                  when the implementation is based on the "dbl-1998-cmo-2"
 
-  *                  doubling formulas in [8] and standard optimizations are
 
-  *                  applied when curve parameter A is one of { 0, -3 }.
 
-  *
 
-  * \param grp       Pointer to the group representing the curve.
 
-  *
 
-  * \param R         Pointer to a point structure to hold the result.
 
-  *
 
-  * \param P         Pointer to the point that has to be doubled, given with
 
-  *                  Jacobian coordinates.
 
-  *
 
-  * \return          0 if successful.
 
-  */
 
- #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)
 
- int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *R, const mbedtls_ecp_point *P );
 
- #endif
 
- /**
 
-  * \brief           Normalize jacobian coordinates of an array of (pointers to)
 
-  *                  points.
 
-  *
 
-  *                  Using Montgomery's trick to perform only one inversion mod P
 
-  *                  the cost is:
 
-  *                      1N(t) := 1I + (6t - 3)M + 1S
 
-  *                  (See for example Algorithm 10.3.4. in [9])
 
-  *
 
-  *                  This function is used only as a subrutine of
 
-  *                  ecp_mul_comb().
 
-  *
 
-  *                  Warning: fails (returning an error) if one of the points is
 
-  *                  zero!
 
-  *                  This should never happen, see choice of w in ecp_mul_comb().
 
-  *
 
-  * \param grp       Pointer to the group representing the curve.
 
-  *
 
-  * \param T         Array of pointers to the points to normalise.
 
-  *
 
-  * \param t_len     Number of elements in the array.
 
-  *
 
-  * \return          0 if successful,
 
-  *                      an error if one of the points is zero.
 
-  */
 
- #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)
 
- int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *T[], size_t t_len );
 
- #endif
 
- /**
 
-  * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1.
 
-  *
 
-  *                  Cost in field operations if done by [5] 3.2.1:
 
-  *                      1N := 1I + 3M + 1S
 
-  *
 
-  * \param grp       Pointer to the group representing the curve.
 
-  *
 
-  * \param pt        pointer to the point to be normalised. This is an
 
-  *                  input/output parameter.
 
-  *
 
-  * \return          0 if successful.
 
-  */
 
- #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)
 
- int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *pt );
 
- #endif
 
- #endif /* ECP_SHORTWEIERSTRASS */
 
- #if defined(ECP_MONTGOMERY)
 
- #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)
 
- int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,
 
-         const mbedtls_ecp_point *Q, const mbedtls_mpi *d );
 
- #endif
 
- /**
 
-  * \brief           Randomize projective x/z coordinates:
 
-  *                      (X, Z) -> (l X, l Z) for random l
 
-  *
 
-  * \param grp       pointer to the group representing the curve
 
-  *
 
-  * \param P         the point on the curve to be randomised given with
 
-  *                  projective coordinates. This is an input/output parameter.
 
-  *
 
-  * \param f_rng     a function pointer to the random number generator
 
-  *
 
-  * \param p_rng     a pointer to the random number generator state
 
-  *
 
-  * \return          0 if successful
 
-  */
 
- #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)
 
- int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),
 
-         void *p_rng );
 
- #endif
 
- /**
 
-  * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1.
 
-  *
 
-  * \param grp       pointer to the group representing the curve
 
-  *
 
-  * \param P         pointer to the point to be normalised. This is an
 
-  *                  input/output parameter.
 
-  *
 
-  * \return          0 if successful
 
-  */
 
- #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)
 
- int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,
 
-         mbedtls_ecp_point *P );
 
- #endif
 
- #endif /* ECP_MONTGOMERY */
 
- #endif /* MBEDTLS_ECP_INTERNAL_ALT */
 
- #endif /* ecp_internal.h */
 
 
  |