| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458 | /* *  Multi-precision integer library * *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved *  SPDX-License-Identifier: Apache-2.0 * *  Licensed under the Apache License, Version 2.0 (the "License"); you may *  not use this file except in compliance with the License. *  You may obtain a copy of the License at * *  http://www.apache.org/licenses/LICENSE-2.0 * *  Unless required by applicable law or agreed to in writing, software *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *  See the License for the specific language governing permissions and *  limitations under the License. * *  This file is part of mbed TLS (https://tls.mbed.org) *//* *  The following sources were referenced in the design of this Multi-precision *  Integer library: * *  [1] Handbook of Applied Cryptography - 1997 *      Menezes, van Oorschot and Vanstone * *  [2] Multi-Precision Math *      Tom St Denis *      https://github.com/libtom/libtommath/blob/develop/tommath.pdf * *  [3] GNU Multi-Precision Arithmetic Library *      https://gmplib.org/manual/index.html * */#if !defined(MBEDTLS_CONFIG_FILE)#include "mbedtls/config.h"#else#include MBEDTLS_CONFIG_FILE#endif#if defined(MBEDTLS_BIGNUM_C)#include "mbedtls/bignum.h"#include "mbedtls/bn_mul.h"#include <string.h>#if defined(MBEDTLS_PLATFORM_C)#include "mbedtls/platform.h"#else#ifdef PRINTF_STDLIB#include <stdio.h>#endif#ifdef PRINTF_CUSTOM#include "tinystdio.h"#endif#include <stdlib.h>#define mbedtls_printf     printf#define mbedtls_calloc    calloc#define mbedtls_free       free#endif/* Implementation that should never be optimized out by the compiler */static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n ) {    volatile mbedtls_mpi_uint *p = v; while( n-- ) *p++ = 0;}#define ciL    (sizeof(mbedtls_mpi_uint))         /* chars in limb  */#define biL    (ciL << 3)               /* bits  in limb  */#define biH    (ciL << 2)               /* half limb size */#define MPI_SIZE_T_MAX  ( (size_t) -1 ) /* SIZE_T_MAX is not standard *//* * Convert between bits/chars and number of limbs * Divide first in order to avoid potential overflows */#define BITS_TO_LIMBS(i)  ( (i) / biL + ( (i) % biL != 0 ) )#define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )/* * Initialize one MPI */void mbedtls_mpi_init( mbedtls_mpi *X ){    if( X == NULL )        return;    X->s = 1;    X->n = 0;    X->p = NULL;}/* * Unallocate one MPI */void mbedtls_mpi_free( mbedtls_mpi *X ){    if( X == NULL )        return;    if( X->p != NULL )    {        mbedtls_mpi_zeroize( X->p, X->n );        mbedtls_free( X->p );    }    X->s = 1;    X->n = 0;    X->p = NULL;}/* * Enlarge to the specified number of limbs */int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs ){    mbedtls_mpi_uint *p;    if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )        return( MBEDTLS_ERR_MPI_ALLOC_FAILED );    if( X->n < nblimbs )    {        if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )            return( MBEDTLS_ERR_MPI_ALLOC_FAILED );        if( X->p != NULL )        {            memcpy( p, X->p, X->n * ciL );            mbedtls_mpi_zeroize( X->p, X->n );            mbedtls_free( X->p );        }        X->n = nblimbs;        X->p = p;    }    return( 0 );}/* * Resize down as much as possible, * while keeping at least the specified number of limbs */int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs ){    mbedtls_mpi_uint *p;    size_t i;    /* Actually resize up in this case */    if( X->n <= nblimbs )        return( mbedtls_mpi_grow( X, nblimbs ) );    for( i = X->n - 1; i > 0; i-- )        if( X->p[i] != 0 )            break;    i++;    if( i < nblimbs )        i = nblimbs;    if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )        return( MBEDTLS_ERR_MPI_ALLOC_FAILED );    if( X->p != NULL )    {        memcpy( p, X->p, i * ciL );        mbedtls_mpi_zeroize( X->p, X->n );        mbedtls_free( X->p );    }    X->n = i;    X->p = p;    return( 0 );}/* * Copy the contents of Y into X */int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y ){    int ret;    size_t i;    if( X == Y )        return( 0 );    if( Y->p == NULL )    {        mbedtls_mpi_free( X );        return( 0 );    }    for( i = Y->n - 1; i > 0; i-- )        if( Y->p[i] != 0 )            break;    i++;    X->s = Y->s;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );    memset( X->p, 0, X->n * ciL );    memcpy( X->p, Y->p, i * ciL );cleanup:    return( ret );}/* * Swap the contents of X and Y */void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y ){    mbedtls_mpi T;    memcpy( &T,  X, sizeof( mbedtls_mpi ) );    memcpy(  X,  Y, sizeof( mbedtls_mpi ) );    memcpy(  Y, &T, sizeof( mbedtls_mpi ) );}/* * Conditionally assign X = Y, without leaking information * about whether the assignment was made or not. * (Leaking information about the respective sizes of X and Y is ok however.) */int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign ){    int ret = 0;    size_t i;    /* make sure assign is 0 or 1 in a time-constant manner */    assign = (assign | (unsigned char)-assign) >> 7;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );    X->s = X->s * ( 1 - assign ) + Y->s * assign;    for( i = 0; i < Y->n; i++ )        X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign;    for( ; i < X->n; i++ )        X->p[i] *= ( 1 - assign );cleanup:    return( ret );}/* * Conditionally swap X and Y, without leaking information * about whether the swap was made or not. * Here it is not ok to simply swap the pointers, which whould lead to * different memory access patterns when X and Y are used afterwards. */int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap ){    int ret, s;    size_t i;    mbedtls_mpi_uint tmp;    if( X == Y )        return( 0 );    /* make sure swap is 0 or 1 in a time-constant manner */    swap = (swap | (unsigned char)-swap) >> 7;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );    s = X->s;    X->s = X->s * ( 1 - swap ) + Y->s * swap;    Y->s = Y->s * ( 1 - swap ) +    s * swap;    for( i = 0; i < X->n; i++ )    {        tmp = X->p[i];        X->p[i] = X->p[i] * ( 1 - swap ) + Y->p[i] * swap;        Y->p[i] = Y->p[i] * ( 1 - swap ) +     tmp * swap;    }cleanup:    return( ret );}/* * Set value from integer */int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z ){    int ret;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );    memset( X->p, 0, X->n * ciL );    X->p[0] = ( z < 0 ) ? -z : z;    X->s    = ( z < 0 ) ? -1 : 1;cleanup:    return( ret );}/* * Get a specific bit */int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos ){    if( X->n * biL <= pos )        return( 0 );    return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );}/* * Set a bit to a specific value of 0 or 1 */int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val ){    int ret = 0;    size_t off = pos / biL;    size_t idx = pos % biL;    if( val != 0 && val != 1 )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    if( X->n * biL <= pos )    {        if( val == 0 )            return( 0 );        MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );    }    X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );    X->p[off] |= (mbedtls_mpi_uint) val << idx;cleanup:    return( ret );}/* * Return the number of less significant zero-bits */size_t mbedtls_mpi_lsb( const mbedtls_mpi *X ){    size_t i, j, count = 0;    for( i = 0; i < X->n; i++ )        for( j = 0; j < biL; j++, count++ )            if( ( ( X->p[i] >> j ) & 1 ) != 0 )                return( count );    return( 0 );}/* * Count leading zero bits in a given integer */static size_t mbedtls_clz( const mbedtls_mpi_uint x ){    size_t j;    mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);    for( j = 0; j < biL; j++ )    {        if( x & mask ) break;        mask >>= 1;    }    return j;}/* * Return the number of bits */size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X ){    size_t i, j;    if( X->n == 0 )        return( 0 );    for( i = X->n - 1; i > 0; i-- )        if( X->p[i] != 0 )            break;    j = biL - mbedtls_clz( X->p[i] );    return( ( i * biL ) + j );}/* * Return the total size in bytes */size_t mbedtls_mpi_size( const mbedtls_mpi *X ){    return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );}/* * Convert an ASCII character to digit value */static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c ){    *d = 255;    if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;    if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;    if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;    if( *d >= (mbedtls_mpi_uint) radix )        return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );    return( 0 );}/* * Import from an ASCII string */int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s ){    int ret;    size_t i, j, slen, n;    mbedtls_mpi_uint d;    mbedtls_mpi T;    if( radix < 2 || radix > 16 )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    mbedtls_mpi_init( &T );    slen = strlen( s );    if( radix == 16 )    {        if( slen > MPI_SIZE_T_MAX >> 2 )            return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );        n = BITS_TO_LIMBS( slen << 2 );        MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );        for( i = slen, j = 0; i > 0; i--, j++ )        {            if( i == 1 && s[i - 1] == '-' )            {                X->s = -1;                break;            }            MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );            X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );        }    }    else    {        MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );        for( i = 0; i < slen; i++ )        {            if( i == 0 && s[i] == '-' )            {                X->s = -1;                continue;            }            MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );            if( X->s == 1 )            {                MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );            }            else            {                MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( X, &T, d ) );            }        }    }cleanup:    mbedtls_mpi_free( &T );    return( ret );}/* * Helper to write the digits high-order first */static int mpi_write_hlp( mbedtls_mpi *X, int radix, char **p ){    int ret;    mbedtls_mpi_uint r;    if( radix < 2 || radix > 16 )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );    if( mbedtls_mpi_cmp_int( X, 0 ) != 0 )        MBEDTLS_MPI_CHK( mpi_write_hlp( X, radix, p ) );    if( r < 10 )        *(*p)++ = (char)( r + 0x30 );    else        *(*p)++ = (char)( r + 0x37 );cleanup:    return( ret );}/* * Export into an ASCII string */int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,                              char *buf, size_t buflen, size_t *olen ){    int ret = 0;    size_t n;    char *p;    mbedtls_mpi T;    if( radix < 2 || radix > 16 )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    n = mbedtls_mpi_bitlen( X );    if( radix >=  4 ) n >>= 1;    if( radix >= 16 ) n >>= 1;    /*     * Round up the buffer length to an even value to ensure that there is     * enough room for hexadecimal values that can be represented in an odd     * number of digits.     */    n += 3 + ( ( n + 1 ) & 1 );    if( buflen < n )    {        *olen = n;        return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );    }    p = buf;    mbedtls_mpi_init( &T );    if( X->s == -1 )        *p++ = '-';    if( radix == 16 )    {        int c;        size_t i, j, k;        for( i = X->n, k = 0; i > 0; i-- )        {            for( j = ciL; j > 0; j-- )            {                c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;                if( c == 0 && k == 0 && ( i + j ) != 2 )                    continue;                *(p++) = "0123456789ABCDEF" [c / 16];                *(p++) = "0123456789ABCDEF" [c % 16];                k = 1;            }        }    }    else    {        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );        if( T.s == -1 )            T.s = 1;        MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p ) );    }    *p++ = '\0';    *olen = p - buf;cleanup:    mbedtls_mpi_free( &T );    return( ret );}#if defined(MBEDTLS_FS_IO)/* * Read X from an opened file */int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin ){#if 0    mbedtls_mpi_uint d;    size_t slen;    char *p;    /*     * Buffer should have space for (short) label and decimal formatted MPI,     * newline characters and '\0'     */    char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];    memset( s, 0, sizeof( s ) );    if( fgets( s, sizeof( s ) - 1, fin ) == NULL )        return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );    slen = strlen( s );    if( slen == sizeof( s ) - 2 )        return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );    if( slen > 0 && s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }    if( slen > 0 && s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }    p = s + slen;    while( p-- > s )        if( mpi_get_digit( &d, radix, *p ) != 0 )            break;    return( mbedtls_mpi_read_string( X, radix, p + 1 ) );#endif}/* * Write X into an opened file (or stdout if fout == NULL) */int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout ){    int ret;#if 0    size_t n, slen, plen;    /*     * Buffer should have space for (short) label and decimal formatted MPI,     * newline characters and '\0'     */    char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];    memset( s, 0, sizeof( s ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );    if( p == NULL ) p = "";    plen = strlen( p );    slen = strlen( s );    s[slen++] = '\r';    s[slen++] = '\n';    if( fout != NULL )    {        if( fwrite( p, 1, plen, fout ) != plen ||            fwrite( s, 1, slen, fout ) != slen )            return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );    }    else        mbedtls_printf( "%s%s", p, s );cleanup:#endif    return( ret );}#endif /* MBEDTLS_FS_IO *//* * Import X from unsigned binary data, big endian */int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen ){    int ret;#if 1    size_t i, j, n;    for( n = 0; n < buflen; n++ )        if( buf[n] != 0 )            break;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );    for( i = buflen, j = 0; i > n; i--, j++ )        X->p[j / ciL] |= ((mbedtls_mpi_uint) buf[i - 1]) << ((j % ciL) << 3);cleanup:#endif    return( ret );}/* * Export X into unsigned binary data, big endian */int mbedtls_mpi_write_binary( const mbedtls_mpi *X, unsigned char *buf, size_t buflen ){    size_t i, j, n;    n = mbedtls_mpi_size( X );    if( buflen < n )        return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );    memset( buf, 0, buflen );    for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )        buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );    return( 0 );}/* * Left-shift: X <<= count */int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count ){    int ret;    size_t i, v0, t1;    mbedtls_mpi_uint r0 = 0, r1;    v0 = count / (biL    );    t1 = count & (biL - 1);    i = mbedtls_mpi_bitlen( X ) + count;    if( X->n * biL < i )        MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );    ret = 0;    /*     * shift by count / limb_size     */    if( v0 > 0 )    {        for( i = X->n; i > v0; i-- )            X->p[i - 1] = X->p[i - v0 - 1];        for( ; i > 0; i-- )            X->p[i - 1] = 0;    }    /*     * shift by count % limb_size     */    if( t1 > 0 )    {        for( i = v0; i < X->n; i++ )        {            r1 = X->p[i] >> (biL - t1);            X->p[i] <<= t1;            X->p[i] |= r0;            r0 = r1;        }    }cleanup:    return( ret );}/* * Right-shift: X >>= count */int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count ){    size_t i, v0, v1;    mbedtls_mpi_uint r0 = 0, r1;    v0 = count /  biL;    v1 = count & (biL - 1);    if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )        return mbedtls_mpi_lset( X, 0 );    /*     * shift by count / limb_size     */    if( v0 > 0 )    {        for( i = 0; i < X->n - v0; i++ )            X->p[i] = X->p[i + v0];        for( ; i < X->n; i++ )            X->p[i] = 0;    }    /*     * shift by count % limb_size     */    if( v1 > 0 )    {        for( i = X->n; i > 0; i-- )        {            r1 = X->p[i - 1] << (biL - v1);            X->p[i - 1] >>= v1;            X->p[i - 1] |= r0;            r0 = r1;        }    }    return( 0 );}/* * Compare unsigned values */int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y ){    size_t i, j;    for( i = X->n; i > 0; i-- )        if( X->p[i - 1] != 0 )            break;    for( j = Y->n; j > 0; j-- )        if( Y->p[j - 1] != 0 )            break;    if( i == 0 && j == 0 )        return( 0 );    if( i > j ) return(  1 );    if( j > i ) return( -1 );    for( ; i > 0; i-- )    {        if( X->p[i - 1] > Y->p[i - 1] ) return(  1 );        if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );    }    return( 0 );}/* * Compare signed values */int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y ){    size_t i, j;    for( i = X->n; i > 0; i-- )        if( X->p[i - 1] != 0 )            break;    for( j = Y->n; j > 0; j-- )        if( Y->p[j - 1] != 0 )            break;    if( i == 0 && j == 0 )        return( 0 );    if( i > j ) return(  X->s );    if( j > i ) return( -Y->s );    if( X->s > 0 && Y->s < 0 ) return(  1 );    if( Y->s > 0 && X->s < 0 ) return( -1 );    for( ; i > 0; i-- )    {        if( X->p[i - 1] > Y->p[i - 1] ) return(  X->s );        if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );    }    return( 0 );}/* * Compare signed values */int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z ){    mbedtls_mpi Y;    mbedtls_mpi_uint p[1];    *p  = ( z < 0 ) ? -z : z;    Y.s = ( z < 0 ) ? -1 : 1;    Y.n = 1;    Y.p = p;    return( mbedtls_mpi_cmp_mpi( X, &Y ) );}/* * Unsigned addition: X = |A| + |B|  (HAC 14.7) */int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ){    int ret;    size_t i, j;    mbedtls_mpi_uint *o, *p, c, tmp;    if( X == B )    {        const mbedtls_mpi *T = A; A = X; B = T;    }    if( X != A )        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );    /*     * X should always be positive as a result of unsigned additions.     */    X->s = 1;    for( j = B->n; j > 0; j-- )        if( B->p[j - 1] != 0 )            break;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );    o = B->p; p = X->p; c = 0;    /*     * tmp is used because it might happen that p == o     */    for( i = 0; i < j; i++, o++, p++ )    {        tmp= *o;        *p +=  c; c  = ( *p <  c );        *p += tmp; c += ( *p < tmp );    }    while( c != 0 )    {        if( i >= X->n )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );            p = X->p + i;        }        *p += c; c = ( *p < c ); i++; p++;    }cleanup:    return( ret );}/* * Helper for mbedtls_mpi subtraction */static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d ){    size_t i;    mbedtls_mpi_uint c, z;    for( i = c = 0; i < n; i++, s++, d++ )    {        z = ( *d <  c );     *d -=  c;        c = ( *d < *s ) + z; *d -= *s;    }    while( c != 0 )    {        z = ( *d < c ); *d -= c;        c = z; i++; d++;    }}/* * Unsigned subtraction: X = |A| - |B|  (HAC 14.9) */int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ){    mbedtls_mpi TB;    int ret;    size_t n;    if( mbedtls_mpi_cmp_abs( A, B ) < 0 )        return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );    mbedtls_mpi_init( &TB );    if( X == B )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );        B = &TB;    }    if( X != A )        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );    /*     * X should always be positive as a result of unsigned subtractions.     */    X->s = 1;    ret = 0;    for( n = B->n; n > 0; n-- )        if( B->p[n - 1] != 0 )            break;    mpi_sub_hlp( n, B->p, X->p );cleanup:    mbedtls_mpi_free( &TB );    return( ret );}/* * Signed addition: X = A + B */int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ){    int ret, s = A->s;    if( A->s * B->s < 0 )    {        if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );            X->s =  s;        }        else        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );            X->s = -s;        }    }    else    {        MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );        X->s = s;    }cleanup:    return( ret );}/* * Signed subtraction: X = A - B */int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ){    int ret, s = A->s;    if( A->s * B->s > 0 )    {        if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );            X->s =  s;        }        else        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );            X->s = -s;        }    }    else    {        MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );        X->s = s;    }cleanup:    return( ret );}/* * Signed addition: X = A + b */int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b ){    mbedtls_mpi _B;    mbedtls_mpi_uint p[1];    p[0] = ( b < 0 ) ? -b : b;    _B.s = ( b < 0 ) ? -1 : 1;    _B.n = 1;    _B.p = p;    return( mbedtls_mpi_add_mpi( X, A, &_B ) );}/* * Signed subtraction: X = A - b */int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b ){    mbedtls_mpi _B;    mbedtls_mpi_uint p[1];    p[0] = ( b < 0 ) ? -b : b;    _B.s = ( b < 0 ) ? -1 : 1;    _B.n = 1;    _B.p = p;    return( mbedtls_mpi_sub_mpi( X, A, &_B ) );}/* * Helper for mbedtls_mpi multiplication */static#if defined(__APPLE__) && defined(__arm__)/* * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn) * appears to need this to prevent bad ARM code generation at -O3. */__attribute__ ((noinline))#endifvoid mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b ){    mbedtls_mpi_uint c = 0, t = 0;#if defined(MULADDC_HUIT)    for( ; i >= 8; i -= 8 )    {        MULADDC_INIT        MULADDC_HUIT        MULADDC_STOP    }    for( ; i > 0; i-- )    {        MULADDC_INIT        MULADDC_CORE        MULADDC_STOP    }#else /* MULADDC_HUIT */    for( ; i >= 16; i -= 16 )    {        MULADDC_INIT        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_STOP    }    for( ; i >= 8; i -= 8 )    {        MULADDC_INIT        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_STOP    }    for( ; i > 0; i-- )    {        MULADDC_INIT        MULADDC_CORE        MULADDC_STOP    }#endif /* MULADDC_HUIT */    t++;    do {        *d += c; c = ( *d < c ); d++;    }    while( c != 0 );}/* * Baseline multiplication: X = A * B  (HAC 14.12) */int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B ){    int ret;    size_t i, j;    mbedtls_mpi TA, TB;    mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );    if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }    if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }    for( i = A->n; i > 0; i-- )        if( A->p[i - 1] != 0 )            break;    for( j = B->n; j > 0; j-- )        if( B->p[j - 1] != 0 )            break;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );    for( i++; j > 0; j-- )        mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );    X->s = A->s * B->s;cleanup:    mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );    return( ret );}/* * Baseline multiplication: X = A * b */int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b ){    mbedtls_mpi _B;    mbedtls_mpi_uint p[1];    _B.s = 1;    _B.n = 1;    _B.p = p;    p[0] = b;    return( mbedtls_mpi_mul_mpi( X, A, &_B ) );}/* * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and * mbedtls_mpi_uint divisor, d */static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,            mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r ){#if defined(MBEDTLS_HAVE_UDBL)    mbedtls_t_udbl dividend, quotient;#else    const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;    const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;    mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;    mbedtls_mpi_uint u0_msw, u0_lsw;    size_t s;#endif    /*     * Check for overflow     */    if( 0 == d || u1 >= d )    {        if (r != NULL) *r = ~0;        return ( ~0 );    }#if defined(MBEDTLS_HAVE_UDBL)    dividend  = (mbedtls_t_udbl) u1 << biL;    dividend |= (mbedtls_t_udbl) u0;    quotient = dividend / d;    if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )        quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;    if( r != NULL )        *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );    return (mbedtls_mpi_uint) quotient;#else    /*     * Algorithm D, Section 4.3.1 - The Art of Computer Programming     *   Vol. 2 - Seminumerical Algorithms, Knuth     */    /*     * Normalize the divisor, d, and dividend, u0, u1     */    s = mbedtls_clz( d );    d = d << s;    u1 = u1 << s;    u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );    u0 =  u0 << s;    d1 = d >> biH;    d0 = d & uint_halfword_mask;    u0_msw = u0 >> biH;    u0_lsw = u0 & uint_halfword_mask;    /*     * Find the first quotient and remainder     */    q1 = u1 / d1;    r0 = u1 - d1 * q1;    while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )    {        q1 -= 1;        r0 += d1;        if ( r0 >= radix ) break;    }    rAX = ( u1 * radix ) + ( u0_msw - q1 * d );    q0 = rAX / d1;    r0 = rAX - q0 * d1;    while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )    {        q0 -= 1;        r0 += d1;        if ( r0 >= radix ) break;    }    if (r != NULL)        *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;    quotient = q1 * radix + q0;    return quotient;#endif}/* * Division by mbedtls_mpi: A = Q * B + R  (HAC 14.20) */int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B ){    int ret;    size_t i, n, t, k;    mbedtls_mpi X, Y, Z, T1, T2;    if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )        return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );    mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );    mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );    if( mbedtls_mpi_cmp_abs( A, B ) < 0 )    {        if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );        if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );        return( 0 );    }    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );    X.s = Y.s = 1;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z,  0 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, 2 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T2, 3 ) );    k = mbedtls_mpi_bitlen( &Y ) % biL;    if( k < biL - 1 )    {        k = biL - 1 - k;        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );    }    else k = 0;    n = X.n - 1;    t = Y.n - 1;    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );    while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )    {        Z.p[n - t]++;        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );    }    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );    for( i = n; i > t ; i-- )    {        if( X.p[i] >= Y.p[t] )            Z.p[i - t - 1] = ~0;        else        {            Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],                                                            Y.p[t], NULL);        }        Z.p[i - t - 1]++;        do        {            Z.p[i - t - 1]--;            MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );            T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];            T1.p[1] = Y.p[t];            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T2, 0 ) );            T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];            T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];            T2.p[2] = X.p[i];        }        while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1,  biL * ( i - t - 1 ) ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );        if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );            Z.p[i - t - 1]--;        }    }    if( Q != NULL )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );        Q->s = A->s * B->s;    }    if( R != NULL )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );        X.s = A->s;        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );        if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )            R->s = 1;    }cleanup:    mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );    mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );    return( ret );}/* * Division by int: A = Q * b + R */int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, mbedtls_mpi_sint b ){    mbedtls_mpi _B;    mbedtls_mpi_uint p[1];    p[0] = ( b < 0 ) ? -b : b;    _B.s = ( b < 0 ) ? -1 : 1;    _B.n = 1;    _B.p = p;    return( mbedtls_mpi_div_mpi( Q, R, A, &_B ) );}/* * Modulo: R = A mod B */int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B ){    int ret;    if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )        return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );    MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );    while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )      MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );    while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )      MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );cleanup:    return( ret );}/* * Modulo: r = A mod b */int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b ){    size_t i;    mbedtls_mpi_uint x, y, z;    if( b == 0 )        return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );    if( b < 0 )        return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );    /*     * handle trivial cases     */    if( b == 1 )    {        *r = 0;        return( 0 );    }    if( b == 2 )    {        *r = A->p[0] & 1;        return( 0 );    }    /*     * general case     */    for( i = A->n, y = 0; i > 0; i-- )    {        x  = A->p[i - 1];        y  = ( y << biH ) | ( x >> biH );        z  = y / b;        y -= z * b;        x <<= biH;        y  = ( y << biH ) | ( x >> biH );        z  = y / b;        y -= z * b;    }    /*     * If A is negative, then the current y represents a negative value.     * Flipping it to the positive side.     */    if( A->s < 0 && y != 0 )        y = b - y;    *r = y;    return( 0 );}/* * Fast Montgomery initialization (thanks to Tom St Denis) */static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N ){    mbedtls_mpi_uint x, m0 = N->p[0];    unsigned int i;    x  = m0;    x += ( ( m0 + 2 ) & 4 ) << 1;    for( i = biL; i >= 8; i /= 2 )        x *= ( 2 - ( m0 * x ) );    *mm = ~x + 1;}/* * Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36) */static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,                         const mbedtls_mpi *T ){    size_t i, n, m;    mbedtls_mpi_uint u0, u1, *d;    if( T->n < N->n + 1 || T->p == NULL )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    memset( T->p, 0, T->n * ciL );    d = T->p;    n = N->n;    m = ( B->n < n ) ? B->n : n;    for( i = 0; i < n; i++ )    {        /*         * T = (T + u0*B + u1*N) / 2^biL         */        u0 = A->p[i];        u1 = ( d[0] + u0 * B->p[0] ) * mm;        mpi_mul_hlp( m, B->p, d, u0 );        mpi_mul_hlp( n, N->p, d, u1 );        *d++ = u0; d[n + 1] = 0;    }    memcpy( A->p, d, ( n + 1 ) * ciL );    if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )        mpi_sub_hlp( n, N->p, A->p );    else        /* prevent timing attacks */        mpi_sub_hlp( n, A->p, T->p );    return( 0 );}/* * Montgomery reduction: A = A * R^-1 mod N */static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T ){    mbedtls_mpi_uint z = 1;    mbedtls_mpi U;    U.n = U.s = (int) z;    U.p = &z;    return( mpi_montmul( A, &U, N, mm, T ) );}/* * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85) */int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const mbedtls_mpi *N, mbedtls_mpi *_RR ){    int ret;    size_t wbits, wsize, one = 1;    size_t i, j, nblimbs;    size_t bufsize, nbits;    mbedtls_mpi_uint ei, mm, state;    mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;    int neg;    if( mbedtls_mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    /*     * Init temps and window size     */    mpi_montg_init( &mm, N );    mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );    mbedtls_mpi_init( &Apos );    memset( W, 0, sizeof( W ) );    i = mbedtls_mpi_bitlen( E );    wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :            ( i >  79 ) ? 4 : ( i >  23 ) ? 3 : 1;    if( wsize > MBEDTLS_MPI_WINDOW_SIZE )        wsize = MBEDTLS_MPI_WINDOW_SIZE;    j = N->n + 1;    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1],  j ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );    /*     * Compensate for negative A (and correct at the end)     */    neg = ( A->s == -1 );    if( neg )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );        Apos.s = 1;        A = &Apos;    }    /*     * If 1st call, pre-compute R^2 mod N     */    if( _RR == NULL || _RR->p == NULL )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );        if( _RR != NULL )            memcpy( _RR, &RR, sizeof( mbedtls_mpi ) );    }    else        memcpy( &RR, _RR, sizeof( mbedtls_mpi ) );    /*     * W[1] = A * R^2 * R^-1 mod N = A * R mod N     */    if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );    else        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );    MBEDTLS_MPI_CHK( mpi_montmul( &W[1], &RR, N, mm, &T ) );    /*     * X = R^2 * R^-1 mod N = R mod N     */    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );    MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );    if( wsize > 1 )    {        /*         * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)         */        j =  one << ( wsize - 1 );        MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1]    ) );        for( i = 0; i < wsize - 1; i++ )            MBEDTLS_MPI_CHK( mpi_montmul( &W[j], &W[j], N, mm, &T ) );        /*         * W[i] = W[i - 1] * W[1]         */        for( i = j + 1; i < ( one << wsize ); i++ )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );            MBEDTLS_MPI_CHK( mpi_montmul( &W[i], &W[1], N, mm, &T ) );        }    }    nblimbs = E->n;    bufsize = 0;    nbits   = 0;    wbits   = 0;    state   = 0;    while( 1 )    {        if( bufsize == 0 )        {            if( nblimbs == 0 )                break;            nblimbs--;            bufsize = sizeof( mbedtls_mpi_uint ) << 3;        }        bufsize--;        ei = (E->p[nblimbs] >> bufsize) & 1;        /*         * skip leading 0s         */        if( ei == 0 && state == 0 )            continue;        if( ei == 0 && state == 1 )        {            /*             * out of window, square X             */            MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );            continue;        }        /*         * add ei to current window         */        state = 2;        nbits++;        wbits |= ( ei << ( wsize - nbits ) );        if( nbits == wsize )        {            /*             * X = X^wsize R^-1 mod N             */            for( i = 0; i < wsize; i++ )                MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );            /*             * X = X * W[wbits] R^-1 mod N             */            MBEDTLS_MPI_CHK( mpi_montmul( X, &W[wbits], N, mm, &T ) );            state--;            nbits = 0;            wbits = 0;        }    }    /*     * process the remaining bits     */    for( i = 0; i < nbits; i++ )    {        MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );        wbits <<= 1;        if( ( wbits & ( one << wsize ) ) != 0 )            MBEDTLS_MPI_CHK( mpi_montmul( X, &W[1], N, mm, &T ) );    }    /*     * X = A^E * R * R^-1 mod N = A^E mod N     */    MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );    if( neg && E->n != 0 && ( E->p[0] & 1 ) != 0 )    {        X->s = -1;        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );    }cleanup:    for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )        mbedtls_mpi_free( &W[i] );    mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );    if( _RR == NULL || _RR->p == NULL )        mbedtls_mpi_free( &RR );    return( ret );}/* * Greatest common divisor: G = gcd(A, B)  (HAC 14.54) */int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B ){    int ret;    size_t lz, lzt;    mbedtls_mpi TG, TA, TB;    mbedtls_mpi_init( &TG ); mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );    lz = mbedtls_mpi_lsb( &TA );    lzt = mbedtls_mpi_lsb( &TB );    if( lzt < lz )        lz = lzt;    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, lz ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, lz ) );    TA.s = TB.s = 1;    while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );        if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );        }        else        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );        }    }    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );cleanup:    mbedtls_mpi_free( &TG ); mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );    return( ret );}/* * Fill X with size bytes of random. * * Use a temporary bytes representation to make sure the result is the same * regardless of the platform endianness (useful when f_rng is actually * deterministic, eg for tests). */int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,                     int (*f_rng)(void *, unsigned char *, size_t),                     void *p_rng ){    int ret;    unsigned char buf[MBEDTLS_MPI_MAX_SIZE];    if( size > MBEDTLS_MPI_MAX_SIZE )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    MBEDTLS_MPI_CHK( f_rng( p_rng, buf, size ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( X, buf, size ) );cleanup:    return( ret );}/* * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64) */int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N ){    int ret;    mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;    if( mbedtls_mpi_cmp_int( N, 1 ) <= 0 )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );    mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );    mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );    MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );    if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )    {        ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;        goto cleanup;    }    MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );    do    {        while( ( TU.p[0] & 1 ) == 0 )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );            if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )            {                MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );                MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );            }            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );        }        while( ( TV.p[0] & 1 ) == 0 )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );            if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )            {                MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );                MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );            }            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );        }        if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );        }        else        {            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );        }    }    while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );    while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );    while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );cleanup:    mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );    mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );    mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );    return( ret );}#if defined(MBEDTLS_GENPRIME)static const int small_prime[] ={        3,    5,    7,   11,   13,   17,   19,   23,       29,   31,   37,   41,   43,   47,   53,   59,       61,   67,   71,   73,   79,   83,   89,   97,      101,  103,  107,  109,  113,  127,  131,  137,      139,  149,  151,  157,  163,  167,  173,  179,      181,  191,  193,  197,  199,  211,  223,  227,      229,  233,  239,  241,  251,  257,  263,  269,      271,  277,  281,  283,  293,  307,  311,  313,      317,  331,  337,  347,  349,  353,  359,  367,      373,  379,  383,  389,  397,  401,  409,  419,      421,  431,  433,  439,  443,  449,  457,  461,      463,  467,  479,  487,  491,  499,  503,  509,      521,  523,  541,  547,  557,  563,  569,  571,      577,  587,  593,  599,  601,  607,  613,  617,      619,  631,  641,  643,  647,  653,  659,  661,      673,  677,  683,  691,  701,  709,  719,  727,      733,  739,  743,  751,  757,  761,  769,  773,      787,  797,  809,  811,  821,  823,  827,  829,      839,  853,  857,  859,  863,  877,  881,  883,      887,  907,  911,  919,  929,  937,  941,  947,      953,  967,  971,  977,  983,  991,  997, -103};/* * Small divisors test (X must be positive) * * Return values: * 0: no small factor (possible prime, more tests needed) * 1: certain prime * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime * other negative: error */static int mpi_check_small_factors( const mbedtls_mpi *X ){    int ret = 0;    size_t i;    mbedtls_mpi_uint r;    if( ( X->p[0] & 1 ) == 0 )        return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );    for( i = 0; small_prime[i] > 0; i++ )    {        if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )            return( 1 );        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );        if( r == 0 )            return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );    }cleanup:    return( ret );}/* * Miller-Rabin pseudo-primality test  (HAC 4.24) */static int mpi_miller_rabin( const mbedtls_mpi *X,                             int (*f_rng)(void *, unsigned char *, size_t),                             void *p_rng ){    int ret, count;    size_t i, j, k, n, s;    mbedtls_mpi W, R, T, A, RR;    mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );    mbedtls_mpi_init( &RR );    /*     * W = |X| - 1     * R = W >> lsb( W )     */    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );    s = mbedtls_mpi_lsb( &W );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );    i = mbedtls_mpi_bitlen( X );    /*     * HAC, table 4.4     */    n = ( ( i >= 1300 ) ?  2 : ( i >=  850 ) ?  3 :          ( i >=  650 ) ?  4 : ( i >=  350 ) ?  8 :          ( i >=  250 ) ? 12 : ( i >=  150 ) ? 18 : 27 );    for( i = 0; i < n; i++ )    {        /*         * pick a random A, 1 < A < |X| - 1         */        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );        if( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 )        {            j = mbedtls_mpi_bitlen( &A ) - mbedtls_mpi_bitlen( &W );            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j + 1 ) );        }        A.p[0] |= 3;        count = 0;        do {            MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );            j = mbedtls_mpi_bitlen( &A );            k = mbedtls_mpi_bitlen( &W );            if (j > k) {                MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j - k ) );            }            if (count++ > 30) {                return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;            }        } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||                  mbedtls_mpi_cmp_int( &A, 1 )  <= 0    );        /*         * A = A^R mod |X|         */        MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );        if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||            mbedtls_mpi_cmp_int( &A,  1 ) == 0 )            continue;        j = 1;        while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )        {            /*             * A = A * A mod |X|             */            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X  ) );            if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )                break;            j++;        }        /*         * not prime if A != |X| - 1 or A == 1         */        if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||            mbedtls_mpi_cmp_int( &A,  1 ) == 0 )        {            ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;            break;        }    }cleanup:    mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );    mbedtls_mpi_free( &RR );    return( ret );}/* * Pseudo-primality test: small factors, then Miller-Rabin */int mbedtls_mpi_is_prime( const mbedtls_mpi *X,                  int (*f_rng)(void *, unsigned char *, size_t),                  void *p_rng ){    int ret;    mbedtls_mpi XX;    XX.s = 1;    XX.n = X->n;    XX.p = X->p;    if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||        mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )        return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );    if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )        return( 0 );    if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )    {        if( ret == 1 )            return( 0 );        return( ret );    }    return( mpi_miller_rabin( &XX, f_rng, p_rng ) );}/* * Prime number generation */int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,                   int (*f_rng)(void *, unsigned char *, size_t),                   void *p_rng ){    int ret;    size_t k, n;    mbedtls_mpi_uint r;    mbedtls_mpi Y;    if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )        return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );    mbedtls_mpi_init( &Y );    n = BITS_TO_LIMBS( nbits );    MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );    k = mbedtls_mpi_bitlen( X );    if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits + 1 ) );    mbedtls_mpi_set_bit( X, nbits-1, 1 );    X->p[0] |= 1;    if( dh_flag == 0 )    {        while( ( ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ) ) != 0 )        {            if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )                goto cleanup;            MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 2 ) );        }    }    else    {        /*         * An necessary condition for Y and X = 2Y + 1 to be prime         * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).         * Make sure it is satisfied, while keeping X = 3 mod 4         */        X->p[0] |= 2;        MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );        if( r == 0 )            MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );        else if( r == 1 )            MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );        /* Set Y = (X-1) / 2, which is X / 2 because X is odd */        MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );        while( 1 )        {            /*             * First, check small factors for X and Y             * before doing Miller-Rabin on any of them             */            if( ( ret = mpi_check_small_factors(  X         ) ) == 0 &&                ( ret = mpi_check_small_factors( &Y         ) ) == 0 &&                ( ret = mpi_miller_rabin(  X, f_rng, p_rng  ) ) == 0 &&                ( ret = mpi_miller_rabin( &Y, f_rng, p_rng  ) ) == 0 )            {                break;            }            if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )                goto cleanup;            /*             * Next candidates. We want to preserve Y = (X-1) / 2 and             * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)             * so up Y by 6 and X by 12.             */            MBEDTLS_MPI_CHK( mbedtls_mpi_add_int(  X,  X, 12 ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6  ) );        }    }cleanup:    mbedtls_mpi_free( &Y );    return( ret );}#endif /* MBEDTLS_GENPRIME */#if defined(MBEDTLS_SELF_TEST)#define GCD_PAIR_COUNT  3static const int gcd_pairs[GCD_PAIR_COUNT][3] ={    { 693, 609, 21 },    { 1764, 868, 28 },    { 768454923, 542167814, 1 }};/* * Checkup routine */int mbedtls_mpi_self_test( int verbose ){    int ret, i;    mbedtls_mpi A, E, N, X, Y, U, V;    mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );    mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,        "EFE021C2645FD1DC586E69184AF4A31E" \        "D5F53E93B5F123FA41680867BA110131" \        "944FE7952E2517337780CB0DB80E61AA" \        "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,        "B2E7EFD37075B9F03FF989C7C5051C20" \        "34D2A323810251127E7BF8625A4F49A5" \        "F3E27F4DA8BD59C47D6DAABA4C8127BD" \        "5B5C25763222FEFCCFC38B832366C29E" ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,        "0066A198186C18C10B2F5ED9B522752A" \        "9830B69916E535C8F047518A889A43A5" \        "94B6BED27A168D31D4A52F88925AA8F5" ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,        "602AB7ECA597A3D6B56FF9829A5E8B85" \        "9E857EA95A03512E2BAE7391688D264A" \        "A5663B0341DB9CCFD2C4C5F421FEC814" \        "8001B72E848A38CAE1C65F78E56ABDEF" \        "E12D3C039B8A02D6BE593F0BBBDA56F1" \        "ECF677152EF804370C1A305CAF3B5BF1" \        "30879B56C61DE584A0F53A2447A51E" ) );    if( verbose != 0 )        mbedtls_printf( "  MPI test #1 (mul_mpi): " );    if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )    {        if( verbose != 0 )            mbedtls_printf( "failed\n" );        ret = 1;        goto cleanup;    }    if( verbose != 0 )        mbedtls_printf( "passed\n" );    MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,        "256567336059E52CAE22925474705F39A94" ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,        "6613F26162223DF488E9CD48CC132C7A" \        "0AC93C701B001B092E4E5B9F73BCD27B" \        "9EE50D0657C77F374E903CDFA4C642" ) );    if( verbose != 0 )        mbedtls_printf( "  MPI test #2 (div_mpi): " );    if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||        mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )    {        if( verbose != 0 )            mbedtls_printf( "failed\n" );        ret = 1;        goto cleanup;    }    if( verbose != 0 )        mbedtls_printf( "passed\n" );    MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,        "36E139AEA55215609D2816998ED020BB" \        "BD96C37890F65171D948E9BC7CBAA4D9" \        "325D24D6A3C12710F10A09FA08AB87" ) );    if( verbose != 0 )        mbedtls_printf( "  MPI test #3 (exp_mod): " );    if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )    {        if( verbose != 0 )            mbedtls_printf( "failed\n" );        ret = 1;        goto cleanup;    }    if( verbose != 0 )        mbedtls_printf( "passed\n" );    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,        "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \        "C3DBA76456363A10869622EAC2DD84EC" \        "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );    if( verbose != 0 )        mbedtls_printf( "  MPI test #4 (inv_mod): " );    if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )    {        if( verbose != 0 )            mbedtls_printf( "failed\n" );        ret = 1;        goto cleanup;    }    if( verbose != 0 )        mbedtls_printf( "passed\n" );    if( verbose != 0 )        mbedtls_printf( "  MPI test #5 (simple gcd): " );    for( i = 0; i < GCD_PAIR_COUNT; i++ )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );        if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )        {            if( verbose != 0 )                mbedtls_printf( "failed at %d\n", i );            ret = 1;            goto cleanup;        }    }    if( verbose != 0 )        mbedtls_printf( "passed\n" );cleanup:    if( ret != 0 && verbose != 0 )        mbedtls_printf( "Unexpected error, return code = %08X\n", ret );    mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );    mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );    if( verbose != 0 )        mbedtls_printf( "\n" );    return( ret );}#endif /* MBEDTLS_SELF_TEST */#endif /* MBEDTLS_BIGNUM_C */
 |