| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464 | /* *  AES-NI support functions * *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved *  SPDX-License-Identifier: Apache-2.0 * *  Licensed under the Apache License, Version 2.0 (the "License"); you may *  not use this file except in compliance with the License. *  You may obtain a copy of the License at * *  http://www.apache.org/licenses/LICENSE-2.0 * *  Unless required by applicable law or agreed to in writing, software *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *  See the License for the specific language governing permissions and *  limitations under the License. * *  This file is part of mbed TLS (https://tls.mbed.org) *//* * [AES-WP] http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set * [CLMUL-WP] http://software.intel.com/en-us/articles/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode/ */#if !defined(MBEDTLS_CONFIG_FILE)#include "mbedtls/config.h"#else#include MBEDTLS_CONFIG_FILE#endif#if defined(MBEDTLS_AESNI_C)#include "mbedtls/aesni.h"#include <string.h>#ifndef asm#define asm __asm#endif#if defined(MBEDTLS_HAVE_X86_64)/* * AES-NI support detection routine */int mbedtls_aesni_has_support( unsigned int what ){    static int done = 0;    static unsigned int c = 0;    if( ! done )    {        asm( "movl  $1, %%eax   \n\t"             "cpuid             \n\t"             : "=c" (c)             :             : "eax", "ebx", "edx" );        done = 1;    }    return( ( c & what ) != 0 );}/* * Binutils needs to be at least 2.19 to support AES-NI instructions. * Unfortunately, a lot of users have a lower version now (2014-04). * Emit bytecode directly in order to support "old" version of gas. * * Opcodes from the Intel architecture reference manual, vol. 3. * We always use registers, so we don't need prefixes for memory operands. * Operand macros are in gas order (src, dst) as opposed to Intel order * (dst, src) in order to blend better into the surrounding assembly code. */#define AESDEC      ".byte 0x66,0x0F,0x38,0xDE,"#define AESDECLAST  ".byte 0x66,0x0F,0x38,0xDF,"#define AESENC      ".byte 0x66,0x0F,0x38,0xDC,"#define AESENCLAST  ".byte 0x66,0x0F,0x38,0xDD,"#define AESIMC      ".byte 0x66,0x0F,0x38,0xDB,"#define AESKEYGENA  ".byte 0x66,0x0F,0x3A,0xDF,"#define PCLMULQDQ   ".byte 0x66,0x0F,0x3A,0x44,"#define xmm0_xmm0   "0xC0"#define xmm0_xmm1   "0xC8"#define xmm0_xmm2   "0xD0"#define xmm0_xmm3   "0xD8"#define xmm0_xmm4   "0xE0"#define xmm1_xmm0   "0xC1"#define xmm1_xmm2   "0xD1"/* * AES-NI AES-ECB block en(de)cryption */int mbedtls_aesni_crypt_ecb( mbedtls_aes_context *ctx,                     int mode,                     const unsigned char input[16],                     unsigned char output[16] ){    asm( "movdqu    (%3), %%xmm0    \n\t" // load input         "movdqu    (%1), %%xmm1    \n\t" // load round key 0         "pxor      %%xmm1, %%xmm0  \n\t" // round 0         "add       $16, %1         \n\t" // point to next round key         "subl      $1, %0          \n\t" // normal rounds = nr - 1         "test      %2, %2          \n\t" // mode?         "jz        2f              \n\t" // 0 = decrypt         "1:                        \n\t" // encryption loop         "movdqu    (%1), %%xmm1    \n\t" // load round key         AESENC     xmm1_xmm0      "\n\t" // do round         "add       $16, %1         \n\t" // point to next round key         "subl      $1, %0          \n\t" // loop         "jnz       1b              \n\t"         "movdqu    (%1), %%xmm1    \n\t" // load round key         AESENCLAST xmm1_xmm0      "\n\t" // last round         "jmp       3f              \n\t"         "2:                        \n\t" // decryption loop         "movdqu    (%1), %%xmm1    \n\t"         AESDEC     xmm1_xmm0      "\n\t" // do round         "add       $16, %1         \n\t"         "subl      $1, %0          \n\t"         "jnz       2b              \n\t"         "movdqu    (%1), %%xmm1    \n\t" // load round key         AESDECLAST xmm1_xmm0      "\n\t" // last round         "3:                        \n\t"         "movdqu    %%xmm0, (%4)    \n\t" // export output         :         : "r" (ctx->nr), "r" (ctx->rk), "r" (mode), "r" (input), "r" (output)         : "memory", "cc", "xmm0", "xmm1" );    return( 0 );}/* * GCM multiplication: c = a times b in GF(2^128) * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5. */void mbedtls_aesni_gcm_mult( unsigned char c[16],                     const unsigned char a[16],                     const unsigned char b[16] ){    unsigned char aa[16], bb[16], cc[16];    size_t i;    /* The inputs are in big-endian order, so byte-reverse them */    for( i = 0; i < 16; i++ )    {        aa[i] = a[15 - i];        bb[i] = b[15 - i];    }    asm( "movdqu (%0), %%xmm0               \n\t" // a1:a0         "movdqu (%1), %%xmm1               \n\t" // b1:b0         /*          * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1          * using [CLMUL-WP] algorithm 1 (p. 13).          */         "movdqa %%xmm1, %%xmm2             \n\t" // copy of b1:b0         "movdqa %%xmm1, %%xmm3             \n\t" // same         "movdqa %%xmm1, %%xmm4             \n\t" // same         PCLMULQDQ xmm0_xmm1 ",0x00         \n\t" // a0*b0 = c1:c0         PCLMULQDQ xmm0_xmm2 ",0x11         \n\t" // a1*b1 = d1:d0         PCLMULQDQ xmm0_xmm3 ",0x10         \n\t" // a0*b1 = e1:e0         PCLMULQDQ xmm0_xmm4 ",0x01         \n\t" // a1*b0 = f1:f0         "pxor %%xmm3, %%xmm4               \n\t" // e1+f1:e0+f0         "movdqa %%xmm4, %%xmm3             \n\t" // same         "psrldq $8, %%xmm4                 \n\t" // 0:e1+f1         "pslldq $8, %%xmm3                 \n\t" // e0+f0:0         "pxor %%xmm4, %%xmm2               \n\t" // d1:d0+e1+f1         "pxor %%xmm3, %%xmm1               \n\t" // c1+e0+f1:c0         /*          * Now shift the result one bit to the left,          * taking advantage of [CLMUL-WP] eq 27 (p. 20)          */         "movdqa %%xmm1, %%xmm3             \n\t" // r1:r0         "movdqa %%xmm2, %%xmm4             \n\t" // r3:r2         "psllq $1, %%xmm1                  \n\t" // r1<<1:r0<<1         "psllq $1, %%xmm2                  \n\t" // r3<<1:r2<<1         "psrlq $63, %%xmm3                 \n\t" // r1>>63:r0>>63         "psrlq $63, %%xmm4                 \n\t" // r3>>63:r2>>63         "movdqa %%xmm3, %%xmm5             \n\t" // r1>>63:r0>>63         "pslldq $8, %%xmm3                 \n\t" // r0>>63:0         "pslldq $8, %%xmm4                 \n\t" // r2>>63:0         "psrldq $8, %%xmm5                 \n\t" // 0:r1>>63         "por %%xmm3, %%xmm1                \n\t" // r1<<1|r0>>63:r0<<1         "por %%xmm4, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1         "por %%xmm5, %%xmm2                \n\t" // r3<<1|r2>>62:r2<<1|r1>>63         /*          * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1          * using [CLMUL-WP] algorithm 5 (p. 20).          * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).          */         /* Step 2 (1) */         "movdqa %%xmm1, %%xmm3             \n\t" // x1:x0         "movdqa %%xmm1, %%xmm4             \n\t" // same         "movdqa %%xmm1, %%xmm5             \n\t" // same         "psllq $63, %%xmm3                 \n\t" // x1<<63:x0<<63 = stuff:a         "psllq $62, %%xmm4                 \n\t" // x1<<62:x0<<62 = stuff:b         "psllq $57, %%xmm5                 \n\t" // x1<<57:x0<<57 = stuff:c         /* Step 2 (2) */         "pxor %%xmm4, %%xmm3               \n\t" // stuff:a+b         "pxor %%xmm5, %%xmm3               \n\t" // stuff:a+b+c         "pslldq $8, %%xmm3                 \n\t" // a+b+c:0         "pxor %%xmm3, %%xmm1               \n\t" // x1+a+b+c:x0 = d:x0         /* Steps 3 and 4 */         "movdqa %%xmm1,%%xmm0              \n\t" // d:x0         "movdqa %%xmm1,%%xmm4              \n\t" // same         "movdqa %%xmm1,%%xmm5              \n\t" // same         "psrlq $1, %%xmm0                  \n\t" // e1:x0>>1 = e1:e0'         "psrlq $2, %%xmm4                  \n\t" // f1:x0>>2 = f1:f0'         "psrlq $7, %%xmm5                  \n\t" // g1:x0>>7 = g1:g0'         "pxor %%xmm4, %%xmm0               \n\t" // e1+f1:e0'+f0'         "pxor %%xmm5, %%xmm0               \n\t" // e1+f1+g1:e0'+f0'+g0'         // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing         // bits carried from d. Now get those\t bits back in.         "movdqa %%xmm1,%%xmm3              \n\t" // d:x0         "movdqa %%xmm1,%%xmm4              \n\t" // same         "movdqa %%xmm1,%%xmm5              \n\t" // same         "psllq $63, %%xmm3                 \n\t" // d<<63:stuff         "psllq $62, %%xmm4                 \n\t" // d<<62:stuff         "psllq $57, %%xmm5                 \n\t" // d<<57:stuff         "pxor %%xmm4, %%xmm3               \n\t" // d<<63+d<<62:stuff         "pxor %%xmm5, %%xmm3               \n\t" // missing bits of d:stuff         "psrldq $8, %%xmm3                 \n\t" // 0:missing bits of d         "pxor %%xmm3, %%xmm0               \n\t" // e1+f1+g1:e0+f0+g0         "pxor %%xmm1, %%xmm0               \n\t" // h1:h0         "pxor %%xmm2, %%xmm0               \n\t" // x3+h1:x2+h0         "movdqu %%xmm0, (%2)               \n\t" // done         :         : "r" (aa), "r" (bb), "r" (cc)         : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5" );    /* Now byte-reverse the outputs */    for( i = 0; i < 16; i++ )        c[i] = cc[15 - i];    return;}/* * Compute decryption round keys from encryption round keys */void mbedtls_aesni_inverse_key( unsigned char *invkey,                        const unsigned char *fwdkey, int nr ){    unsigned char *ik = invkey;    const unsigned char *fk = fwdkey + 16 * nr;    memcpy( ik, fk, 16 );    for( fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16 )        asm( "movdqu (%0), %%xmm0       \n\t"             AESIMC  xmm0_xmm0         "\n\t"             "movdqu %%xmm0, (%1)       \n\t"             :             : "r" (fk), "r" (ik)             : "memory", "xmm0" );    memcpy( ik, fk, 16 );}/* * Key expansion, 128-bit case */static void aesni_setkey_enc_128( unsigned char *rk,                                  const unsigned char *key ){    asm( "movdqu (%1), %%xmm0               \n\t" // copy the original key         "movdqu %%xmm0, (%0)               \n\t" // as round key 0         "jmp 2f                            \n\t" // skip auxiliary routine         /*          * Finish generating the next round key.          *          * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff          * with X = rot( sub( r3 ) ) ^ RCON.          *          * On exit, xmm0 is r7:r6:r5:r4          * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3          * and those are written to the round key buffer.          */         "1:                                \n\t"         "pshufd $0xff, %%xmm1, %%xmm1      \n\t" // X:X:X:X         "pxor %%xmm0, %%xmm1               \n\t" // X+r3:X+r2:X+r1:r4         "pslldq $4, %%xmm0                 \n\t" // r2:r1:r0:0         "pxor %%xmm0, %%xmm1               \n\t" // X+r3+r2:X+r2+r1:r5:r4         "pslldq $4, %%xmm0                 \n\t" // etc         "pxor %%xmm0, %%xmm1               \n\t"         "pslldq $4, %%xmm0                 \n\t"         "pxor %%xmm1, %%xmm0               \n\t" // update xmm0 for next time!         "add $16, %0                       \n\t" // point to next round key         "movdqu %%xmm0, (%0)               \n\t" // write it         "ret                               \n\t"         /* Main "loop" */         "2:                                \n\t"         AESKEYGENA xmm0_xmm1 ",0x01        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x02        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x04        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x08        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x10        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x20        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x40        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x80        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x1B        \n\tcall 1b \n\t"         AESKEYGENA xmm0_xmm1 ",0x36        \n\tcall 1b \n\t"         :         : "r" (rk), "r" (key)         : "memory", "cc", "0" );}/* * Key expansion, 192-bit case */static void aesni_setkey_enc_192( unsigned char *rk,                                  const unsigned char *key ){    asm( "movdqu (%1), %%xmm0   \n\t" // copy original round key         "movdqu %%xmm0, (%0)   \n\t"         "add $16, %0           \n\t"         "movq 16(%1), %%xmm1   \n\t"         "movq %%xmm1, (%0)     \n\t"         "add $8, %0            \n\t"         "jmp 2f                \n\t" // skip auxiliary routine         /*          * Finish generating the next 6 quarter-keys.          *          * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4          * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.          *          * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10          * and those are written to the round key buffer.          */         "1:                            \n\t"         "pshufd $0x55, %%xmm2, %%xmm2  \n\t" // X:X:X:X         "pxor %%xmm0, %%xmm2           \n\t" // X+r3:X+r2:X+r1:r4         "pslldq $4, %%xmm0             \n\t" // etc         "pxor %%xmm0, %%xmm2           \n\t"         "pslldq $4, %%xmm0             \n\t"         "pxor %%xmm0, %%xmm2           \n\t"         "pslldq $4, %%xmm0             \n\t"         "pxor %%xmm2, %%xmm0           \n\t" // update xmm0 = r9:r8:r7:r6         "movdqu %%xmm0, (%0)           \n\t"         "add $16, %0                   \n\t"         "pshufd $0xff, %%xmm0, %%xmm2  \n\t" // r9:r9:r9:r9         "pxor %%xmm1, %%xmm2           \n\t" // stuff:stuff:r9+r5:r10         "pslldq $4, %%xmm1             \n\t" // r2:r1:r0:0         "pxor %%xmm2, %%xmm1           \n\t" // xmm1 = stuff:stuff:r11:r10         "movq %%xmm1, (%0)             \n\t"         "add $8, %0                    \n\t"         "ret                           \n\t"         "2:                            \n\t"         AESKEYGENA xmm1_xmm2 ",0x01    \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x02    \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x04    \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x08    \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x10    \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x20    \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x40    \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x80    \n\tcall 1b \n\t"         :         : "r" (rk), "r" (key)         : "memory", "cc", "0" );}/* * Key expansion, 256-bit case */static void aesni_setkey_enc_256( unsigned char *rk,                                  const unsigned char *key ){    asm( "movdqu (%1), %%xmm0           \n\t"         "movdqu %%xmm0, (%0)           \n\t"         "add $16, %0                   \n\t"         "movdqu 16(%1), %%xmm1         \n\t"         "movdqu %%xmm1, (%0)           \n\t"         "jmp 2f                        \n\t" // skip auxiliary routine         /*          * Finish generating the next two round keys.          *          * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and          * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON          *          * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12          * and those have been written to the output buffer.          */         "1:                                \n\t"         "pshufd $0xff, %%xmm2, %%xmm2      \n\t"         "pxor %%xmm0, %%xmm2               \n\t"         "pslldq $4, %%xmm0                 \n\t"         "pxor %%xmm0, %%xmm2               \n\t"         "pslldq $4, %%xmm0                 \n\t"         "pxor %%xmm0, %%xmm2               \n\t"         "pslldq $4, %%xmm0                 \n\t"         "pxor %%xmm2, %%xmm0               \n\t"         "add $16, %0                       \n\t"         "movdqu %%xmm0, (%0)               \n\t"         /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )          * and proceed to generate next round key from there */         AESKEYGENA xmm0_xmm2 ",0x00        \n\t"         "pshufd $0xaa, %%xmm2, %%xmm2      \n\t"         "pxor %%xmm1, %%xmm2               \n\t"         "pslldq $4, %%xmm1                 \n\t"         "pxor %%xmm1, %%xmm2               \n\t"         "pslldq $4, %%xmm1                 \n\t"         "pxor %%xmm1, %%xmm2               \n\t"         "pslldq $4, %%xmm1                 \n\t"         "pxor %%xmm2, %%xmm1               \n\t"         "add $16, %0                       \n\t"         "movdqu %%xmm1, (%0)               \n\t"         "ret                               \n\t"         /*          * Main "loop" - Generating one more key than necessary,          * see definition of mbedtls_aes_context.buf          */         "2:                                \n\t"         AESKEYGENA xmm1_xmm2 ",0x01        \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x02        \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x04        \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x08        \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x10        \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x20        \n\tcall 1b \n\t"         AESKEYGENA xmm1_xmm2 ",0x40        \n\tcall 1b \n\t"         :         : "r" (rk), "r" (key)         : "memory", "cc", "0" );}/* * Key expansion, wrapper */int mbedtls_aesni_setkey_enc( unsigned char *rk,                      const unsigned char *key,                      size_t bits ){    switch( bits )    {        case 128: aesni_setkey_enc_128( rk, key ); break;        case 192: aesni_setkey_enc_192( rk, key ); break;        case 256: aesni_setkey_enc_256( rk, key ); break;        default : return( MBEDTLS_ERR_AES_INVALID_KEY_LENGTH );    }    return( 0 );}#endif /* MBEDTLS_HAVE_X86_64 */#endif /* MBEDTLS_AESNI_C */
 |