rsa.c 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201
  1. /*
  2. * The RSA public-key cryptosystem
  3. *
  4. * Copyright (C) 2006-2010, Brainspark B.V.
  5. *
  6. * This file is part of PolarSSL (http://www.polarssl.org)
  7. * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
  8. *
  9. * All rights reserved.
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License as published by
  13. * the Free Software Foundation; either version 2 of the License, or
  14. * (at your option) any later version.
  15. *
  16. * This program is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  19. * GNU General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License along
  22. * with this program; if not, write to the Free Software Foundation, Inc.,
  23. * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
  24. */
  25. /*
  26. * RSA was designed by Ron Rivest, Adi Shamir and Len Adleman.
  27. *
  28. * http://theory.lcs.mit.edu/~rivest/rsapaper.pdf
  29. * http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf
  30. */
  31. #include "config.h"
  32. #if defined(POLARSSL_RSA_C)
  33. #include "polarssl/rsa.h"
  34. #include "polarssl/md.h"
  35. #include <stdlib.h>
  36. #include <stdio.h>
  37. /*
  38. * Initialize an RSA context
  39. */
  40. void rsa_init( rsa_context *ctx,
  41. int padding,
  42. int hash_id )
  43. {
  44. memset( ctx, 0, sizeof( rsa_context ) );
  45. ctx->padding = padding;
  46. ctx->hash_id = hash_id;
  47. }
  48. #if defined(POLARSSL_GENPRIME)
  49. /*
  50. * Generate an RSA keypair
  51. */
  52. int rsa_gen_key( rsa_context *ctx,
  53. int (*f_rng)(void *),
  54. void *p_rng,
  55. unsigned int nbits, int exponent )
  56. {
  57. int ret;
  58. mpi P1, Q1, H, G;
  59. if( f_rng == NULL || nbits < 128 || exponent < 3 )
  60. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  61. mpi_init( &P1 ); mpi_init( &Q1 ); mpi_init( &H ); mpi_init( &G );
  62. /*
  63. * find primes P and Q with Q < P so that:
  64. * GCD( E, (P-1)*(Q-1) ) == 1
  65. */
  66. MPI_CHK( mpi_lset( &ctx->E, exponent ) );
  67. do
  68. {
  69. MPI_CHK( mpi_gen_prime( &ctx->P, ( nbits + 1 ) >> 1, 0,
  70. f_rng, p_rng ) );
  71. MPI_CHK( mpi_gen_prime( &ctx->Q, ( nbits + 1 ) >> 1, 0,
  72. f_rng, p_rng ) );
  73. if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 )
  74. mpi_swap( &ctx->P, &ctx->Q );
  75. if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 )
  76. continue;
  77. MPI_CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
  78. if( mpi_msb( &ctx->N ) != nbits )
  79. continue;
  80. MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
  81. MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
  82. MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
  83. MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
  84. }
  85. while( mpi_cmp_int( &G, 1 ) != 0 );
  86. /*
  87. * D = E^-1 mod ((P-1)*(Q-1))
  88. * DP = D mod (P - 1)
  89. * DQ = D mod (Q - 1)
  90. * QP = Q^-1 mod P
  91. */
  92. MPI_CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H ) );
  93. MPI_CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) );
  94. MPI_CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) );
  95. MPI_CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) );
  96. ctx->len = ( mpi_msb( &ctx->N ) + 7 ) >> 3;
  97. cleanup:
  98. mpi_free( &P1 ); mpi_free( &Q1 ); mpi_free( &H ); mpi_free( &G );
  99. if( ret != 0 )
  100. {
  101. rsa_free( ctx );
  102. return( POLARSSL_ERR_RSA_KEY_GEN_FAILED + ret );
  103. }
  104. return( 0 );
  105. }
  106. #endif
  107. /*
  108. * Check a public RSA key
  109. */
  110. int rsa_check_pubkey( const rsa_context *ctx )
  111. {
  112. if( !ctx->N.p || !ctx->E.p )
  113. return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
  114. if( ( ctx->N.p[0] & 1 ) == 0 ||
  115. ( ctx->E.p[0] & 1 ) == 0 )
  116. return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
  117. if( mpi_msb( &ctx->N ) < 128 ||
  118. mpi_msb( &ctx->N ) > 4096 )
  119. return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
  120. if( mpi_msb( &ctx->E ) < 2 ||
  121. mpi_msb( &ctx->E ) > 64 )
  122. return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
  123. return( 0 );
  124. }
  125. /*
  126. * Check a private RSA key
  127. */
  128. int rsa_check_privkey( const rsa_context *ctx )
  129. {
  130. int ret;
  131. mpi PQ, DE, P1, Q1, H, I, G, G2, L1, L2;
  132. if( ( ret = rsa_check_pubkey( ctx ) ) != 0 )
  133. return( ret );
  134. if( !ctx->P.p || !ctx->Q.p || !ctx->D.p )
  135. return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED );
  136. mpi_init( &PQ ); mpi_init( &DE ); mpi_init( &P1 ); mpi_init( &Q1 );
  137. mpi_init( &H ); mpi_init( &I ); mpi_init( &G ); mpi_init( &G2 );
  138. mpi_init( &L1 ); mpi_init( &L2 );
  139. MPI_CHK( mpi_mul_mpi( &PQ, &ctx->P, &ctx->Q ) );
  140. MPI_CHK( mpi_mul_mpi( &DE, &ctx->D, &ctx->E ) );
  141. MPI_CHK( mpi_sub_int( &P1, &ctx->P, 1 ) );
  142. MPI_CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) );
  143. MPI_CHK( mpi_mul_mpi( &H, &P1, &Q1 ) );
  144. MPI_CHK( mpi_gcd( &G, &ctx->E, &H ) );
  145. MPI_CHK( mpi_gcd( &G2, &P1, &Q1 ) );
  146. MPI_CHK( mpi_div_mpi( &L1, &L2, &H, &G2 ) );
  147. MPI_CHK( mpi_mod_mpi( &I, &DE, &L1 ) );
  148. /*
  149. * Check for a valid PKCS1v2 private key
  150. */
  151. if( mpi_cmp_mpi( &PQ, &ctx->N ) != 0 ||
  152. mpi_cmp_int( &L2, 0 ) != 0 ||
  153. mpi_cmp_int( &I, 1 ) != 0 ||
  154. mpi_cmp_int( &G, 1 ) != 0 )
  155. {
  156. ret = POLARSSL_ERR_RSA_KEY_CHECK_FAILED;
  157. }
  158. cleanup:
  159. mpi_free( &PQ ); mpi_free( &DE ); mpi_free( &P1 ); mpi_free( &Q1 );
  160. mpi_free( &H ); mpi_free( &I ); mpi_free( &G ); mpi_free( &G2 );
  161. mpi_free( &L1 ); mpi_free( &L2 );
  162. if( ret == POLARSSL_ERR_RSA_KEY_CHECK_FAILED )
  163. return( ret );
  164. if( ret != 0 )
  165. return( POLARSSL_ERR_RSA_KEY_CHECK_FAILED + ret );
  166. return( 0 );
  167. }
  168. /*
  169. * Do an RSA public key operation
  170. */
  171. int rsa_public( rsa_context *ctx,
  172. const unsigned char *input,
  173. unsigned char *output )
  174. {
  175. int ret;
  176. size_t olen;
  177. mpi T;
  178. mpi_init( &T );
  179. MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
  180. if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
  181. {
  182. mpi_free( &T );
  183. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  184. }
  185. olen = ctx->len;
  186. MPI_CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
  187. MPI_CHK( mpi_write_binary( &T, output, olen ) );
  188. cleanup:
  189. mpi_free( &T );
  190. if( ret != 0 )
  191. return( POLARSSL_ERR_RSA_PUBLIC_FAILED + ret );
  192. return( 0 );
  193. }
  194. /*
  195. * Do an RSA private key operation
  196. */
  197. int rsa_private( rsa_context *ctx,
  198. const unsigned char *input,
  199. unsigned char *output )
  200. {
  201. int ret;
  202. size_t olen;
  203. mpi T, T1, T2;
  204. mpi_init( &T ); mpi_init( &T1 ); mpi_init( &T2 );
  205. MPI_CHK( mpi_read_binary( &T, input, ctx->len ) );
  206. if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
  207. {
  208. mpi_free( &T );
  209. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  210. }
  211. #if defined(POLARSSL_RSA_NO_CRT)
  212. MPI_CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) );
  213. #else
  214. /*
  215. * faster decryption using the CRT
  216. *
  217. * T1 = input ^ dP mod P
  218. * T2 = input ^ dQ mod Q
  219. */
  220. MPI_CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) );
  221. MPI_CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) );
  222. /*
  223. * T = (T1 - T2) * (Q^-1 mod P) mod P
  224. */
  225. MPI_CHK( mpi_sub_mpi( &T, &T1, &T2 ) );
  226. MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) );
  227. MPI_CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) );
  228. /*
  229. * output = T2 + T * Q
  230. */
  231. MPI_CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) );
  232. MPI_CHK( mpi_add_mpi( &T, &T2, &T1 ) );
  233. #endif
  234. olen = ctx->len;
  235. MPI_CHK( mpi_write_binary( &T, output, olen ) );
  236. cleanup:
  237. mpi_free( &T ); mpi_free( &T1 ); mpi_free( &T2 );
  238. if( ret != 0 )
  239. return( POLARSSL_ERR_RSA_PRIVATE_FAILED + ret );
  240. return( 0 );
  241. }
  242. #if defined(POLARSSL_PKCS1_V21)
  243. /**
  244. * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
  245. *
  246. * @param dst buffer to mask
  247. * @param dlen length of destination buffer
  248. * @param src source of the mask generation
  249. * @param slen length of the source buffer
  250. * @param md_ctx message digest context to use
  251. */
  252. static void mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src, size_t slen,
  253. md_context_t *md_ctx )
  254. {
  255. unsigned char mask[POLARSSL_MD_MAX_SIZE];
  256. unsigned char counter[4];
  257. unsigned char *p;
  258. unsigned int hlen;
  259. size_t i, use_len;
  260. memset( mask, 0, POLARSSL_MD_MAX_SIZE );
  261. memset( counter, 0, 4 );
  262. hlen = md_ctx->md_info->size;
  263. // Generate and apply dbMask
  264. //
  265. p = dst;
  266. while( dlen > 0 )
  267. {
  268. use_len = hlen;
  269. if( dlen < hlen )
  270. use_len = dlen;
  271. md_starts( md_ctx );
  272. md_update( md_ctx, src, slen );
  273. md_update( md_ctx, counter, 4 );
  274. md_finish( md_ctx, mask );
  275. for( i = 0; i < use_len; ++i )
  276. *p++ ^= mask[i];
  277. counter[3]++;
  278. dlen -= use_len;
  279. }
  280. }
  281. #endif
  282. /*
  283. * Add the message padding, then do an RSA operation
  284. */
  285. int rsa_pkcs1_encrypt( rsa_context *ctx,
  286. int (*f_rng)(void *),
  287. void *p_rng,
  288. int mode, size_t ilen,
  289. const unsigned char *input,
  290. unsigned char *output )
  291. {
  292. size_t nb_pad, olen;
  293. unsigned char *p = output;
  294. #if defined(POLARSSL_PKCS1_V21)
  295. unsigned int i, hlen;
  296. const md_info_t *md_info;
  297. md_context_t md_ctx;
  298. #endif
  299. olen = ctx->len;
  300. if( f_rng == NULL )
  301. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  302. switch( ctx->padding )
  303. {
  304. case RSA_PKCS_V15:
  305. if( olen < ilen + 11 )
  306. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  307. nb_pad = olen - 3 - ilen;
  308. *p++ = 0;
  309. *p++ = RSA_CRYPT;
  310. while( nb_pad-- > 0 )
  311. {
  312. int rng_dl = 100;
  313. do {
  314. *p = (unsigned char) f_rng( p_rng );
  315. } while( *p == 0 && --rng_dl );
  316. // Check if RNG failed to generate data
  317. //
  318. if( rng_dl == 0 )
  319. return POLARSSL_ERR_RSA_RNG_FAILED;
  320. p++;
  321. }
  322. *p++ = 0;
  323. memcpy( p, input, ilen );
  324. break;
  325. #if defined(POLARSSL_PKCS1_V21)
  326. case RSA_PKCS_V21:
  327. md_info = md_info_from_type( ctx->hash_id );
  328. if( md_info == NULL )
  329. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  330. hlen = md_get_size( md_info );
  331. if( olen < ilen + 2 * hlen + 2 || f_rng == NULL )
  332. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  333. memset( output, 0, olen );
  334. memset( &md_ctx, 0, sizeof( md_context_t ) );
  335. md_init_ctx( &md_ctx, md_info );
  336. *p++ = 0;
  337. // Generate a random octet string seed
  338. //
  339. for( i = 0; i < hlen; ++i )
  340. *p++ = (unsigned char) f_rng( p_rng );
  341. // Construct DB
  342. //
  343. md( md_info, p, 0, p );
  344. p += hlen;
  345. p += olen - 2 * hlen - 2 - ilen;
  346. *p++ = 1;
  347. memcpy( p, input, ilen );
  348. // maskedDB: Apply dbMask to DB
  349. //
  350. mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
  351. &md_ctx );
  352. // maskedSeed: Apply seedMask to seed
  353. //
  354. mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
  355. &md_ctx );
  356. break;
  357. #endif
  358. default:
  359. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  360. }
  361. return( ( mode == RSA_PUBLIC )
  362. ? rsa_public( ctx, output, output )
  363. : rsa_private( ctx, output, output ) );
  364. }
  365. /*
  366. * Do an RSA operation, then remove the message padding
  367. */
  368. int rsa_pkcs1_decrypt( rsa_context *ctx,
  369. int mode, size_t *olen,
  370. const unsigned char *input,
  371. unsigned char *output,
  372. size_t output_max_len)
  373. {
  374. int ret;
  375. size_t ilen;
  376. unsigned char *p;
  377. unsigned char buf[1024];
  378. #if defined(POLARSSL_PKCS1_V21)
  379. unsigned char lhash[POLARSSL_MD_MAX_SIZE];
  380. unsigned int hlen;
  381. const md_info_t *md_info;
  382. md_context_t md_ctx;
  383. #endif
  384. ilen = ctx->len;
  385. if( ilen < 16 || ilen > sizeof( buf ) )
  386. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  387. ret = ( mode == RSA_PUBLIC )
  388. ? rsa_public( ctx, input, buf )
  389. : rsa_private( ctx, input, buf );
  390. if( ret != 0 )
  391. return( ret );
  392. p = buf;
  393. switch( ctx->padding )
  394. {
  395. case RSA_PKCS_V15:
  396. if( *p++ != 0 || *p++ != RSA_CRYPT )
  397. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  398. while( *p != 0 )
  399. {
  400. if( p >= buf + ilen - 1 )
  401. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  402. p++;
  403. }
  404. p++;
  405. break;
  406. #if defined(POLARSSL_PKCS1_V21)
  407. case RSA_PKCS_V21:
  408. if( *p++ != 0 )
  409. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  410. md_info = md_info_from_type( ctx->hash_id );
  411. if( md_info == NULL )
  412. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  413. hlen = md_get_size( md_info );
  414. memset( &md_ctx, 0, sizeof( md_context_t ) );
  415. md_init_ctx( &md_ctx, md_info );
  416. // Generate lHash
  417. //
  418. md( md_info, lhash, 0, lhash );
  419. // seed: Apply seedMask to maskedSeed
  420. //
  421. mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
  422. &md_ctx );
  423. // DB: Apply dbMask to maskedDB
  424. //
  425. mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
  426. &md_ctx );
  427. p += hlen;
  428. // Check validity
  429. //
  430. if( memcmp( lhash, p, hlen ) != 0 )
  431. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  432. p += hlen;
  433. while( *p == 0 && p < buf + ilen )
  434. p++;
  435. if( p == buf + ilen )
  436. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  437. if( *p++ != 0x01 )
  438. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  439. break;
  440. #endif
  441. default:
  442. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  443. }
  444. if (ilen - (p - buf) > output_max_len)
  445. return( POLARSSL_ERR_RSA_OUTPUT_TOO_LARGE );
  446. *olen = ilen - (p - buf);
  447. memcpy( output, p, *olen );
  448. return( 0 );
  449. }
  450. /*
  451. * Do an RSA operation to sign the message digest
  452. */
  453. int rsa_pkcs1_sign( rsa_context *ctx,
  454. int (*f_rng)(void *),
  455. void *p_rng,
  456. int mode,
  457. int hash_id,
  458. unsigned int hashlen,
  459. const unsigned char *hash,
  460. unsigned char *sig )
  461. {
  462. size_t nb_pad, olen;
  463. unsigned char *p = sig;
  464. #if defined(POLARSSL_PKCS1_V21)
  465. unsigned char salt[POLARSSL_MD_MAX_SIZE];
  466. unsigned int i, slen, hlen, offset = 0;
  467. size_t msb;
  468. const md_info_t *md_info;
  469. md_context_t md_ctx;
  470. #else
  471. (void) f_rng;
  472. (void) p_rng;
  473. #endif
  474. olen = ctx->len;
  475. switch( ctx->padding )
  476. {
  477. case RSA_PKCS_V15:
  478. switch( hash_id )
  479. {
  480. case SIG_RSA_RAW:
  481. nb_pad = olen - 3 - hashlen;
  482. break;
  483. case SIG_RSA_MD2:
  484. case SIG_RSA_MD4:
  485. case SIG_RSA_MD5:
  486. nb_pad = olen - 3 - 34;
  487. break;
  488. case SIG_RSA_SHA1:
  489. nb_pad = olen - 3 - 35;
  490. break;
  491. case SIG_RSA_SHA224:
  492. nb_pad = olen - 3 - 47;
  493. break;
  494. case SIG_RSA_SHA256:
  495. nb_pad = olen - 3 - 51;
  496. break;
  497. case SIG_RSA_SHA384:
  498. nb_pad = olen - 3 - 67;
  499. break;
  500. case SIG_RSA_SHA512:
  501. nb_pad = olen - 3 - 83;
  502. break;
  503. default:
  504. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  505. }
  506. if( nb_pad < 8 )
  507. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  508. *p++ = 0;
  509. *p++ = RSA_SIGN;
  510. memset( p, 0xFF, nb_pad );
  511. p += nb_pad;
  512. *p++ = 0;
  513. switch( hash_id )
  514. {
  515. case SIG_RSA_RAW:
  516. memcpy( p, hash, hashlen );
  517. break;
  518. case SIG_RSA_MD2:
  519. memcpy( p, ASN1_HASH_MDX, 18 );
  520. memcpy( p + 18, hash, 16 );
  521. p[13] = 2; break;
  522. case SIG_RSA_MD4:
  523. memcpy( p, ASN1_HASH_MDX, 18 );
  524. memcpy( p + 18, hash, 16 );
  525. p[13] = 4; break;
  526. case SIG_RSA_MD5:
  527. memcpy( p, ASN1_HASH_MDX, 18 );
  528. memcpy( p + 18, hash, 16 );
  529. p[13] = 5; break;
  530. case SIG_RSA_SHA1:
  531. memcpy( p, ASN1_HASH_SHA1, 15 );
  532. memcpy( p + 15, hash, 20 );
  533. break;
  534. case SIG_RSA_SHA224:
  535. memcpy( p, ASN1_HASH_SHA2X, 19 );
  536. memcpy( p + 19, hash, 28 );
  537. p[1] += 28; p[14] = 4; p[18] += 28; break;
  538. case SIG_RSA_SHA256:
  539. memcpy( p, ASN1_HASH_SHA2X, 19 );
  540. memcpy( p + 19, hash, 32 );
  541. p[1] += 32; p[14] = 1; p[18] += 32; break;
  542. case SIG_RSA_SHA384:
  543. memcpy( p, ASN1_HASH_SHA2X, 19 );
  544. memcpy( p + 19, hash, 48 );
  545. p[1] += 48; p[14] = 2; p[18] += 48; break;
  546. case SIG_RSA_SHA512:
  547. memcpy( p, ASN1_HASH_SHA2X, 19 );
  548. memcpy( p + 19, hash, 64 );
  549. p[1] += 64; p[14] = 3; p[18] += 64; break;
  550. default:
  551. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  552. }
  553. break;
  554. #if defined(POLARSSL_PKCS1_V21)
  555. case RSA_PKCS_V21:
  556. if( f_rng == NULL )
  557. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  558. switch( hash_id )
  559. {
  560. case SIG_RSA_MD2:
  561. case SIG_RSA_MD4:
  562. case SIG_RSA_MD5:
  563. hashlen = 16;
  564. break;
  565. case SIG_RSA_SHA1:
  566. hashlen = 20;
  567. break;
  568. case SIG_RSA_SHA224:
  569. hashlen = 28;
  570. break;
  571. case SIG_RSA_SHA256:
  572. hashlen = 32;
  573. break;
  574. case SIG_RSA_SHA384:
  575. hashlen = 48;
  576. break;
  577. case SIG_RSA_SHA512:
  578. hashlen = 64;
  579. break;
  580. default:
  581. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  582. }
  583. md_info = md_info_from_type( ctx->hash_id );
  584. if( md_info == NULL )
  585. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  586. hlen = md_get_size( md_info );
  587. slen = hlen;
  588. memset( sig, 0, olen );
  589. memset( &md_ctx, 0, sizeof( md_context_t ) );
  590. md_init_ctx( &md_ctx, md_info );
  591. msb = mpi_msb( &ctx->N ) - 1;
  592. // Generate salt of length slen
  593. //
  594. for( i = 0; i < slen; ++i )
  595. salt[i] = (unsigned char) f_rng( p_rng );
  596. // Note: EMSA-PSS encoding is over the length of N - 1 bits
  597. //
  598. msb = mpi_msb( &ctx->N ) - 1;
  599. p += olen - hlen * 2 - 2;
  600. *p++ = 0x01;
  601. memcpy( p, salt, slen );
  602. p += slen;
  603. // Generate H = Hash( M' )
  604. //
  605. md_starts( &md_ctx );
  606. md_update( &md_ctx, p, 8 );
  607. md_update( &md_ctx, hash, hashlen );
  608. md_update( &md_ctx, salt, slen );
  609. md_finish( &md_ctx, p );
  610. // Compensate for boundary condition when applying mask
  611. //
  612. if( msb % 8 == 0 )
  613. offset = 1;
  614. // maskedDB: Apply dbMask to DB
  615. //
  616. mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen, &md_ctx );
  617. msb = mpi_msb( &ctx->N ) - 1;
  618. sig[0] &= 0xFF >> ( olen * 8 - msb );
  619. p += hlen;
  620. *p++ = 0xBC;
  621. break;
  622. #endif
  623. default:
  624. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  625. }
  626. return( ( mode == RSA_PUBLIC )
  627. ? rsa_public( ctx, sig, sig )
  628. : rsa_private( ctx, sig, sig ) );
  629. }
  630. /*
  631. * Do an RSA operation and check the message digest
  632. */
  633. int rsa_pkcs1_verify( rsa_context *ctx,
  634. int mode,
  635. int hash_id,
  636. unsigned int hashlen,
  637. const unsigned char *hash,
  638. unsigned char *sig )
  639. {
  640. int ret;
  641. size_t len, siglen;
  642. unsigned char *p, c;
  643. unsigned char buf[1024];
  644. #if defined(POLARSSL_PKCS1_V21)
  645. unsigned char zeros[8];
  646. unsigned int hlen;
  647. size_t slen, msb;
  648. const md_info_t *md_info;
  649. md_context_t md_ctx;
  650. #endif
  651. siglen = ctx->len;
  652. if( siglen < 16 || siglen > sizeof( buf ) )
  653. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  654. ret = ( mode == RSA_PUBLIC )
  655. ? rsa_public( ctx, sig, buf )
  656. : rsa_private( ctx, sig, buf );
  657. if( ret != 0 )
  658. return( ret );
  659. p = buf;
  660. switch( ctx->padding )
  661. {
  662. case RSA_PKCS_V15:
  663. if( *p++ != 0 || *p++ != RSA_SIGN )
  664. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  665. while( *p != 0 )
  666. {
  667. if( p >= buf + siglen - 1 || *p != 0xFF )
  668. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  669. p++;
  670. }
  671. p++;
  672. len = siglen - ( p - buf );
  673. if( len == 34 )
  674. {
  675. c = p[13];
  676. p[13] = 0;
  677. if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 )
  678. return( POLARSSL_ERR_RSA_VERIFY_FAILED );
  679. if( ( c == 2 && hash_id == SIG_RSA_MD2 ) ||
  680. ( c == 4 && hash_id == SIG_RSA_MD4 ) ||
  681. ( c == 5 && hash_id == SIG_RSA_MD5 ) )
  682. {
  683. if( memcmp( p + 18, hash, 16 ) == 0 )
  684. return( 0 );
  685. else
  686. return( POLARSSL_ERR_RSA_VERIFY_FAILED );
  687. }
  688. }
  689. if( len == 35 && hash_id == SIG_RSA_SHA1 )
  690. {
  691. if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 &&
  692. memcmp( p + 15, hash, 20 ) == 0 )
  693. return( 0 );
  694. else
  695. return( POLARSSL_ERR_RSA_VERIFY_FAILED );
  696. }
  697. if( ( len == 19 + 28 && p[14] == 4 && hash_id == SIG_RSA_SHA224 ) ||
  698. ( len == 19 + 32 && p[14] == 1 && hash_id == SIG_RSA_SHA256 ) ||
  699. ( len == 19 + 48 && p[14] == 2 && hash_id == SIG_RSA_SHA384 ) ||
  700. ( len == 19 + 64 && p[14] == 3 && hash_id == SIG_RSA_SHA512 ) )
  701. {
  702. c = p[1] - 17;
  703. p[1] = 17;
  704. p[14] = 0;
  705. if( p[18] == c &&
  706. memcmp( p, ASN1_HASH_SHA2X, 18 ) == 0 &&
  707. memcmp( p + 19, hash, c ) == 0 )
  708. return( 0 );
  709. else
  710. return( POLARSSL_ERR_RSA_VERIFY_FAILED );
  711. }
  712. if( len == hashlen && hash_id == SIG_RSA_RAW )
  713. {
  714. if( memcmp( p, hash, hashlen ) == 0 )
  715. return( 0 );
  716. else
  717. return( POLARSSL_ERR_RSA_VERIFY_FAILED );
  718. }
  719. break;
  720. #if defined(POLARSSL_PKCS1_V21)
  721. case RSA_PKCS_V21:
  722. if( buf[siglen - 1] != 0xBC )
  723. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  724. switch( hash_id )
  725. {
  726. case SIG_RSA_MD2:
  727. case SIG_RSA_MD4:
  728. case SIG_RSA_MD5:
  729. hashlen = 16;
  730. break;
  731. case SIG_RSA_SHA1:
  732. hashlen = 20;
  733. break;
  734. case SIG_RSA_SHA224:
  735. hashlen = 28;
  736. break;
  737. case SIG_RSA_SHA256:
  738. hashlen = 32;
  739. break;
  740. case SIG_RSA_SHA384:
  741. hashlen = 48;
  742. break;
  743. case SIG_RSA_SHA512:
  744. hashlen = 64;
  745. break;
  746. default:
  747. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  748. }
  749. md_info = md_info_from_type( ctx->hash_id );
  750. if( md_info == NULL )
  751. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  752. hlen = md_get_size( md_info );
  753. slen = siglen - hlen - 1;
  754. memset( &md_ctx, 0, sizeof( md_context_t ) );
  755. memset( zeros, 0, 8 );
  756. md_init_ctx( &md_ctx, md_info );
  757. // Note: EMSA-PSS verification is over the length of N - 1 bits
  758. //
  759. msb = mpi_msb( &ctx->N ) - 1;
  760. // Compensate for boundary condition when applying mask
  761. //
  762. if( msb % 8 == 0 )
  763. {
  764. p++;
  765. siglen -= 1;
  766. }
  767. if( buf[0] >> ( 8 - siglen * 8 + msb ) )
  768. return( POLARSSL_ERR_RSA_BAD_INPUT_DATA );
  769. mgf_mask( p, siglen - hlen - 1, p + siglen - hlen - 1, hlen, &md_ctx );
  770. buf[0] &= 0xFF >> ( siglen * 8 - msb );
  771. while( *p == 0 && p < buf + siglen )
  772. p++;
  773. if( p == buf + siglen )
  774. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  775. if( *p++ != 0x01 )
  776. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  777. slen -= p - buf;
  778. // Generate H = Hash( M' )
  779. //
  780. md_starts( &md_ctx );
  781. md_update( &md_ctx, zeros, 8 );
  782. md_update( &md_ctx, hash, hashlen );
  783. md_update( &md_ctx, p, slen );
  784. md_finish( &md_ctx, p );
  785. if( memcmp( p, p + slen, hlen ) == 0 )
  786. return( 0 );
  787. else
  788. return( POLARSSL_ERR_RSA_VERIFY_FAILED );
  789. #endif
  790. default:
  791. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  792. }
  793. return( POLARSSL_ERR_RSA_INVALID_PADDING );
  794. }
  795. /*
  796. * Free the components of an RSA key
  797. */
  798. void rsa_free( rsa_context *ctx )
  799. {
  800. mpi_free( &ctx->RQ ); mpi_free( &ctx->RP ); mpi_free( &ctx->RN );
  801. mpi_free( &ctx->QP ); mpi_free( &ctx->DQ ); mpi_free( &ctx->DP );
  802. mpi_free( &ctx->Q ); mpi_free( &ctx->P ); mpi_free( &ctx->D );
  803. mpi_free( &ctx->E ); mpi_free( &ctx->N );
  804. }
  805. #if defined(POLARSSL_SELF_TEST)
  806. #include "polarssl/sha1.h"
  807. /*
  808. * Example RSA-1024 keypair, for test purposes
  809. */
  810. #define KEY_LEN 128
  811. #define RSA_N "9292758453063D803DD603D5E777D788" \
  812. "8ED1D5BF35786190FA2F23EBC0848AEA" \
  813. "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
  814. "7130B9CED7ACDF54CFC7555AC14EEBAB" \
  815. "93A89813FBF3C4F8066D2D800F7C38A8" \
  816. "1AE31942917403FF4946B0A83D3D3E05" \
  817. "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
  818. "5E94BB77B07507233A0BC7BAC8F90F79"
  819. #define RSA_E "10001"
  820. #define RSA_D "24BF6185468786FDD303083D25E64EFC" \
  821. "66CA472BC44D253102F8B4A9D3BFA750" \
  822. "91386C0077937FE33FA3252D28855837" \
  823. "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
  824. "DF79C5CE07EE72C7F123142198164234" \
  825. "CABB724CF78B8173B9F880FC86322407" \
  826. "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
  827. "071513A1E85B5DFA031F21ECAE91A34D"
  828. #define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
  829. "2C01CAD19EA484A87EA4377637E75500" \
  830. "FCB2005C5C7DD6EC4AC023CDA285D796" \
  831. "C3D9E75E1EFC42488BB4F1D13AC30A57"
  832. #define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
  833. "E211C2B9E5DB1ED0BF61D0D9899620F4" \
  834. "910E4168387E3C30AA1E00C339A79508" \
  835. "8452DD96A9A5EA5D9DCA68DA636032AF"
  836. #define RSA_DP "C1ACF567564274FB07A0BBAD5D26E298" \
  837. "3C94D22288ACD763FD8E5600ED4A702D" \
  838. "F84198A5F06C2E72236AE490C93F07F8" \
  839. "3CC559CD27BC2D1CA488811730BB5725"
  840. #define RSA_DQ "4959CBF6F8FEF750AEE6977C155579C7" \
  841. "D8AAEA56749EA28623272E4F7D0592AF" \
  842. "7C1F1313CAC9471B5C523BFE592F517B" \
  843. "407A1BD76C164B93DA2D32A383E58357"
  844. #define RSA_QP "9AE7FBC99546432DF71896FC239EADAE" \
  845. "F38D18D2B2F0E2DD275AA977E2BF4411" \
  846. "F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \
  847. "A74206CEC169D74BF5A8C50D6F48EA08"
  848. #define PT_LEN 24
  849. #define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
  850. "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
  851. static int myrand( void *rng_state )
  852. {
  853. if( rng_state != NULL )
  854. rng_state = NULL;
  855. return( rand() );
  856. }
  857. /*
  858. * Checkup routine
  859. */
  860. int rsa_self_test( int verbose )
  861. {
  862. size_t len;
  863. rsa_context rsa;
  864. unsigned char rsa_plaintext[PT_LEN];
  865. unsigned char rsa_decrypted[PT_LEN];
  866. unsigned char rsa_ciphertext[KEY_LEN];
  867. #if defined(POLARSSL_SHA1_C)
  868. unsigned char sha1sum[20];
  869. #endif
  870. rsa_init( &rsa, RSA_PKCS_V15, 0 );
  871. rsa.len = KEY_LEN;
  872. mpi_read_string( &rsa.N , 16, RSA_N );
  873. mpi_read_string( &rsa.E , 16, RSA_E );
  874. mpi_read_string( &rsa.D , 16, RSA_D );
  875. mpi_read_string( &rsa.P , 16, RSA_P );
  876. mpi_read_string( &rsa.Q , 16, RSA_Q );
  877. mpi_read_string( &rsa.DP, 16, RSA_DP );
  878. mpi_read_string( &rsa.DQ, 16, RSA_DQ );
  879. mpi_read_string( &rsa.QP, 16, RSA_QP );
  880. if( verbose != 0 )
  881. printf( " RSA key validation: " );
  882. if( rsa_check_pubkey( &rsa ) != 0 ||
  883. rsa_check_privkey( &rsa ) != 0 )
  884. {
  885. if( verbose != 0 )
  886. printf( "failed\n" );
  887. return( 1 );
  888. }
  889. if( verbose != 0 )
  890. printf( "passed\n PKCS#1 encryption : " );
  891. memcpy( rsa_plaintext, RSA_PT, PT_LEN );
  892. if( rsa_pkcs1_encrypt( &rsa, &myrand, NULL, RSA_PUBLIC, PT_LEN,
  893. rsa_plaintext, rsa_ciphertext ) != 0 )
  894. {
  895. if( verbose != 0 )
  896. printf( "failed\n" );
  897. return( 1 );
  898. }
  899. if( verbose != 0 )
  900. printf( "passed\n PKCS#1 decryption : " );
  901. if( rsa_pkcs1_decrypt( &rsa, RSA_PRIVATE, &len,
  902. rsa_ciphertext, rsa_decrypted,
  903. sizeof(rsa_decrypted) ) != 0 )
  904. {
  905. if( verbose != 0 )
  906. printf( "failed\n" );
  907. return( 1 );
  908. }
  909. if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
  910. {
  911. if( verbose != 0 )
  912. printf( "failed\n" );
  913. return( 1 );
  914. }
  915. #if defined(POLARSSL_SHA1_C)
  916. if( verbose != 0 )
  917. printf( "passed\n PKCS#1 data sign : " );
  918. sha1( rsa_plaintext, PT_LEN, sha1sum );
  919. if( rsa_pkcs1_sign( &rsa, NULL, NULL, RSA_PRIVATE, SIG_RSA_SHA1, 20,
  920. sha1sum, rsa_ciphertext ) != 0 )
  921. {
  922. if( verbose != 0 )
  923. printf( "failed\n" );
  924. return( 1 );
  925. }
  926. if( verbose != 0 )
  927. printf( "passed\n PKCS#1 sig. verify: " );
  928. if( rsa_pkcs1_verify( &rsa, RSA_PUBLIC, SIG_RSA_SHA1, 20,
  929. sha1sum, rsa_ciphertext ) != 0 )
  930. {
  931. if( verbose != 0 )
  932. printf( "failed\n" );
  933. return( 1 );
  934. }
  935. if( verbose != 0 )
  936. printf( "passed\n\n" );
  937. #endif /* POLARSSL_SHA1_C */
  938. rsa_free( &rsa );
  939. return( 0 );
  940. }
  941. #endif
  942. #endif