| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097 | /* *  Multi-precision integer library * *  Copyright (C) 2006-2010, Brainspark B.V. * *  This file is part of PolarSSL (http://www.polarssl.org) *  Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org> * *  All rights reserved. * *  This program is free software; you can redistribute it and/or modify *  it under the terms of the GNU General Public License as published by *  the Free Software Foundation; either version 2 of the License, or *  (at your option) any later version. * *  This program is distributed in the hope that it will be useful, *  but WITHOUT ANY WARRANTY; without even the implied warranty of *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *  GNU General Public License for more details. * *  You should have received a copy of the GNU General Public License along *  with this program; if not, write to the Free Software Foundation, Inc., *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *//* *  This MPI implementation is based on: * *  http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf *  http://www.stillhq.com/extracted/gnupg-api/mpi/ *  http://math.libtomcrypt.com/files/tommath.pdf */#include "config.h"#if defined(POLARSSL_BIGNUM_C)#include "polarssl/bignum.h"#include "polarssl/bn_mul.h"#include <stdlib.h>#define ciL    (sizeof(t_uint))         /* chars in limb  */#define biL    (ciL << 3)               /* bits  in limb  */#define biH    (ciL << 2)               /* half limb size *//* * Convert between bits/chars and number of limbs */#define BITS_TO_LIMBS(i)  (((i) + biL - 1) / biL)#define CHARS_TO_LIMBS(i) (((i) + ciL - 1) / ciL)/* * Initialize one MPI */void mpi_init( mpi *X ){    if( X == NULL )        return;    X->s = 1;    X->n = 0;    X->p = NULL;}/* * Unallocate one MPI */void mpi_free( mpi *X ){    if( X == NULL )        return;    if( X->p != NULL )    {        memset( X->p, 0, X->n * ciL );        free( X->p );    }    X->s = 1;    X->n = 0;    X->p = NULL;}/* * Enlarge to the specified number of limbs */int mpi_grow( mpi *X, size_t nblimbs ){    t_uint *p;    if( nblimbs > POLARSSL_MPI_MAX_LIMBS )        return( 1 );    if( X->n < nblimbs )    {        if( ( p = (t_uint *) malloc( nblimbs * ciL ) ) == NULL )            return( 1 );        memset( p, 0, nblimbs * ciL );        if( X->p != NULL )        {            memcpy( p, X->p, X->n * ciL );            memset( X->p, 0, X->n * ciL );            free( X->p );        }        X->n = nblimbs;        X->p = p;    }    return( 0 );}/* * Copy the contents of Y into X */int mpi_copy( mpi *X, const mpi *Y ){    int ret;    size_t i;    if( X == Y )        return( 0 );    for( i = Y->n - 1; i > 0; i-- )        if( Y->p[i] != 0 )            break;    i++;    X->s = Y->s;    MPI_CHK( mpi_grow( X, i ) );    memset( X->p, 0, X->n * ciL );    memcpy( X->p, Y->p, i * ciL );cleanup:    return( ret );}/* * Swap the contents of X and Y */void mpi_swap( mpi *X, mpi *Y ){    mpi T;    memcpy( &T,  X, sizeof( mpi ) );    memcpy(  X,  Y, sizeof( mpi ) );    memcpy(  Y, &T, sizeof( mpi ) );}/* * Set value from integer */int mpi_lset( mpi *X, t_sint z ){    int ret;    MPI_CHK( mpi_grow( X, 1 ) );    memset( X->p, 0, X->n * ciL );    X->p[0] = ( z < 0 ) ? -z : z;    X->s    = ( z < 0 ) ? -1 : 1;cleanup:    return( ret );}/* * Get a specific bit */int mpi_get_bit( mpi *X, size_t pos ){    if( X->n * biL <= pos )        return( 0 );    return ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01;}/* * Set a bit to a specific value of 0 or 1 */int mpi_set_bit( mpi *X, size_t pos, unsigned char val ){    int ret = 0;    size_t off = pos / biL;    size_t idx = pos % biL;    if( val != 0 && val != 1 )        return POLARSSL_ERR_MPI_BAD_INPUT_DATA;            if( X->n * biL <= pos )    {        if( val == 0 )            return ( 0 );        MPI_CHK( mpi_grow( X, off + 1 ) );    }    X->p[off] = ( X->p[off] & ~( 0x01 << idx ) ) | ( val << idx );cleanup:        return( ret );}/* * Return the number of least significant bits */size_t mpi_lsb( const mpi *X ){    size_t i, j, count = 0;    for( i = 0; i < X->n; i++ )        for( j = 0; j < biL; j++, count++ )            if( ( ( X->p[i] >> j ) & 1 ) != 0 )                return( count );    return( 0 );}/* * Return the number of most significant bits */size_t mpi_msb( const mpi *X ){    size_t i, j;    for( i = X->n - 1; i > 0; i-- )        if( X->p[i] != 0 )            break;    for( j = biL; j > 0; j-- )        if( ( ( X->p[i] >> ( j - 1 ) ) & 1 ) != 0 )            break;    return( ( i * biL ) + j );}/* * Return the total size in bytes */size_t mpi_size( const mpi *X ){    return( ( mpi_msb( X ) + 7 ) >> 3 );}/* * Convert an ASCII character to digit value */static int mpi_get_digit( t_uint *d, int radix, char c ){    *d = 255;    if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;    if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;    if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;    if( *d >= (t_uint) radix )        return( POLARSSL_ERR_MPI_INVALID_CHARACTER );    return( 0 );}/* * Import from an ASCII string */int mpi_read_string( mpi *X, int radix, const char *s ){    int ret;    size_t i, j, slen, n;    t_uint d;    mpi T;    if( radix < 2 || radix > 16 )        return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );    mpi_init( &T );    slen = strlen( s );    if( radix == 16 )    {        n = BITS_TO_LIMBS( slen << 2 );        MPI_CHK( mpi_grow( X, n ) );        MPI_CHK( mpi_lset( X, 0 ) );        for( i = slen, j = 0; i > 0; i--, j++ )        {            if( i == 1 && s[i - 1] == '-' )            {                X->s = -1;                break;            }            MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );            X->p[j / (2 * ciL)] |= d << ( (j % (2 * ciL)) << 2 );        }    }    else    {        MPI_CHK( mpi_lset( X, 0 ) );        for( i = 0; i < slen; i++ )        {            if( i == 0 && s[i] == '-' )            {                X->s = -1;                continue;            }            MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );            MPI_CHK( mpi_mul_int( &T, X, radix ) );            if( X->s == 1 )            {                MPI_CHK( mpi_add_int( X, &T, d ) );            }            else            {                MPI_CHK( mpi_sub_int( X, &T, d ) );            }        }    }cleanup:    mpi_free( &T );    return( ret );}/* * Helper to write the digits high-order first */static int mpi_write_hlp( mpi *X, int radix, char **p ){    int ret;    t_uint r;    if( radix < 2 || radix > 16 )        return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );    MPI_CHK( mpi_mod_int( &r, X, radix ) );    MPI_CHK( mpi_div_int( X, NULL, X, radix ) );    if( mpi_cmp_int( X, 0 ) != 0 )        MPI_CHK( mpi_write_hlp( X, radix, p ) );    if( r < 10 )        *(*p)++ = (char)( r + 0x30 );    else        *(*p)++ = (char)( r + 0x37 );cleanup:    return( ret );}/* * Export into an ASCII string */int mpi_write_string( const mpi *X, int radix, char *s, size_t *slen ){    int ret = 0;    size_t n;    char *p;    mpi T;    if( radix < 2 || radix > 16 )        return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );    n = mpi_msb( X );    if( radix >=  4 ) n >>= 1;    if( radix >= 16 ) n >>= 1;    n += 3;    if( *slen < n )    {        *slen = n;        return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL );    }    p = s;    mpi_init( &T );    if( X->s == -1 )        *p++ = '-';    if( radix == 16 )    {        int c;        size_t i, j, k;        for( i = X->n, k = 0; i > 0; i-- )        {            for( j = ciL; j > 0; j-- )            {                c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;                if( c == 0 && k == 0 && ( i + j + 3 ) != 0 )                    continue;                p += sprintf( p, "%02X", c );                k = 1;            }        }    }    else    {        MPI_CHK( mpi_copy( &T, X ) );        if( T.s == -1 )            T.s = 1;        MPI_CHK( mpi_write_hlp( &T, radix, &p ) );    }    *p++ = '\0';    *slen = p - s;cleanup:    mpi_free( &T );    return( ret );}#if defined(POLARSSL_FS_IO)/* * Read X from an opened file */int mpi_read_file( mpi *X, int radix, FILE *fin ){    t_uint d;    size_t slen;    char *p;    char s[1024];    memset( s, 0, sizeof( s ) );    if( fgets( s, sizeof( s ) - 1, fin ) == NULL )        return( POLARSSL_ERR_MPI_FILE_IO_ERROR );    slen = strlen( s );    if( s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }    if( s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }    p = s + slen;    while( --p >= s )        if( mpi_get_digit( &d, radix, *p ) != 0 )            break;    return( mpi_read_string( X, radix, p + 1 ) );}/* * Write X into an opened file (or stdout if fout == NULL) */int mpi_write_file( const char *p, const mpi *X, int radix, FILE *fout ){    int ret;    size_t n, slen, plen;    char s[2048];    n = sizeof( s );    memset( s, 0, n );    n -= 2;    MPI_CHK( mpi_write_string( X, radix, s, (size_t *) &n ) );    if( p == NULL ) p = "";    plen = strlen( p );    slen = strlen( s );    s[slen++] = '\r';    s[slen++] = '\n';    if( fout != NULL )    {        if( fwrite( p, 1, plen, fout ) != plen ||            fwrite( s, 1, slen, fout ) != slen )            return( POLARSSL_ERR_MPI_FILE_IO_ERROR );    }    else        printf( "%s%s", p, s );cleanup:    return( ret );}#endif /* POLARSSL_FS_IO *//* * Import X from unsigned binary data, big endian */int mpi_read_binary( mpi *X, const unsigned char *buf, size_t buflen ){    int ret;    size_t i, j, n;    for( n = 0; n < buflen; n++ )        if( buf[n] != 0 )            break;    MPI_CHK( mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) );    MPI_CHK( mpi_lset( X, 0 ) );    for( i = buflen, j = 0; i > n; i--, j++ )        X->p[j / ciL] |= ((t_uint) buf[i - 1]) << ((j % ciL) << 3);cleanup:    return( ret );}/* * Export X into unsigned binary data, big endian */int mpi_write_binary( const mpi *X, unsigned char *buf, size_t buflen ){    size_t i, j, n;    n = mpi_size( X );    if( buflen < n )        return( POLARSSL_ERR_MPI_BUFFER_TOO_SMALL );    memset( buf, 0, buflen );    for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )        buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );    return( 0 );}/* * Left-shift: X <<= count */int mpi_shift_l( mpi *X, size_t count ){    int ret;    size_t i, v0, t1;    t_uint r0 = 0, r1;    v0 = count / (biL    );    t1 = count & (biL - 1);    i = mpi_msb( X ) + count;    if( X->n * biL < i )        MPI_CHK( mpi_grow( X, BITS_TO_LIMBS( i ) ) );    ret = 0;    /*     * shift by count / limb_size     */    if( v0 > 0 )    {        for( i = X->n; i > v0; i-- )            X->p[i - 1] = X->p[i - v0 - 1];        for( ; i > 0; i-- )            X->p[i - 1] = 0;    }    /*     * shift by count % limb_size     */    if( t1 > 0 )    {        for( i = v0; i < X->n; i++ )        {            r1 = X->p[i] >> (biL - t1);            X->p[i] <<= t1;            X->p[i] |= r0;            r0 = r1;        }    }cleanup:    return( ret );}/* * Right-shift: X >>= count */int mpi_shift_r( mpi *X, size_t count ){    size_t i, v0, v1;    t_uint r0 = 0, r1;    v0 = count /  biL;    v1 = count & (biL - 1);    /*     * shift by count / limb_size     */    if( v0 > 0 )    {        for( i = 0; i < X->n - v0; i++ )            X->p[i] = X->p[i + v0];        for( ; i < X->n; i++ )            X->p[i] = 0;    }    /*     * shift by count % limb_size     */    if( v1 > 0 )    {        for( i = X->n; i > 0; i-- )        {            r1 = X->p[i - 1] << (biL - v1);            X->p[i - 1] >>= v1;            X->p[i - 1] |= r0;            r0 = r1;        }    }    return( 0 );}/* * Compare unsigned values */int mpi_cmp_abs( const mpi *X, const mpi *Y ){    size_t i, j;    for( i = X->n; i > 0; i-- )        if( X->p[i - 1] != 0 )            break;    for( j = Y->n; j > 0; j-- )        if( Y->p[j - 1] != 0 )            break;    if( i == 0 && j == 0 )        return( 0 );    if( i > j ) return(  1 );    if( j > i ) return( -1 );    for( ; i > 0; i-- )    {        if( X->p[i - 1] > Y->p[i - 1] ) return(  1 );        if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );    }    return( 0 );}/* * Compare signed values */int mpi_cmp_mpi( const mpi *X, const mpi *Y ){    size_t i, j;    for( i = X->n; i > 0; i-- )        if( X->p[i - 1] != 0 )            break;    for( j = Y->n; j > 0; j-- )        if( Y->p[j - 1] != 0 )            break;    if( i == 0 && j == 0 )        return( 0 );    if( i > j ) return(  X->s );    if( j > i ) return( -X->s );    if( X->s > 0 && Y->s < 0 ) return(  1 );    if( Y->s > 0 && X->s < 0 ) return( -1 );    for( ; i > 0; i-- )    {        if( X->p[i - 1] > Y->p[i - 1] ) return(  X->s );        if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );    }    return( 0 );}/* * Compare signed values */int mpi_cmp_int( const mpi *X, t_sint z ){    mpi Y;    t_uint p[1];    *p  = ( z < 0 ) ? -z : z;    Y.s = ( z < 0 ) ? -1 : 1;    Y.n = 1;    Y.p = p;    return( mpi_cmp_mpi( X, &Y ) );}/* * Unsigned addition: X = |A| + |B|  (HAC 14.7) */int mpi_add_abs( mpi *X, const mpi *A, const mpi *B ){    int ret;    size_t i, j;    t_uint *o, *p, c;    if( X == B )    {        const mpi *T = A; A = X; B = T;    }    if( X != A )        MPI_CHK( mpi_copy( X, A ) );       /*     * X should always be positive as a result of unsigned additions.     */    X->s = 1;    for( j = B->n; j > 0; j-- )        if( B->p[j - 1] != 0 )            break;    MPI_CHK( mpi_grow( X, j ) );    o = B->p; p = X->p; c = 0;    for( i = 0; i < j; i++, o++, p++ )    {        *p +=  c; c  = ( *p <  c );        *p += *o; c += ( *p < *o );    }    while( c != 0 )    {        if( i >= X->n )        {            MPI_CHK( mpi_grow( X, i + 1 ) );            p = X->p + i;        }        *p += c; c = ( *p < c ); i++;    }cleanup:    return( ret );}/* * Helper for mpi substraction */static void mpi_sub_hlp( size_t n, t_uint *s, t_uint *d ){    size_t i;    t_uint c, z;    for( i = c = 0; i < n; i++, s++, d++ )    {        z = ( *d <  c );     *d -=  c;        c = ( *d < *s ) + z; *d -= *s;    }    while( c != 0 )    {        z = ( *d < c ); *d -= c;        c = z; i++; d++;    }}/* * Unsigned substraction: X = |A| - |B|  (HAC 14.9) */int mpi_sub_abs( mpi *X, const mpi *A, const mpi *B ){    mpi TB;    int ret;    size_t n;    if( mpi_cmp_abs( A, B ) < 0 )        return( POLARSSL_ERR_MPI_NEGATIVE_VALUE );    mpi_init( &TB );    if( X == B )    {        MPI_CHK( mpi_copy( &TB, B ) );        B = &TB;    }    if( X != A )        MPI_CHK( mpi_copy( X, A ) );    /*     * X should always be positive as a result of unsigned substractions.     */    X->s = 1;    ret = 0;    for( n = B->n; n > 0; n-- )        if( B->p[n - 1] != 0 )            break;    mpi_sub_hlp( n, B->p, X->p );cleanup:    mpi_free( &TB );    return( ret );}/* * Signed addition: X = A + B */int mpi_add_mpi( mpi *X, const mpi *A, const mpi *B ){    int ret, s = A->s;    if( A->s * B->s < 0 )    {        if( mpi_cmp_abs( A, B ) >= 0 )        {            MPI_CHK( mpi_sub_abs( X, A, B ) );            X->s =  s;        }        else        {            MPI_CHK( mpi_sub_abs( X, B, A ) );            X->s = -s;        }    }    else    {        MPI_CHK( mpi_add_abs( X, A, B ) );        X->s = s;    }cleanup:    return( ret );}/* * Signed substraction: X = A - B */int mpi_sub_mpi( mpi *X, const mpi *A, const mpi *B ){    int ret, s = A->s;    if( A->s * B->s > 0 )    {        if( mpi_cmp_abs( A, B ) >= 0 )        {            MPI_CHK( mpi_sub_abs( X, A, B ) );            X->s =  s;        }        else        {            MPI_CHK( mpi_sub_abs( X, B, A ) );            X->s = -s;        }    }    else    {        MPI_CHK( mpi_add_abs( X, A, B ) );        X->s = s;    }cleanup:    return( ret );}/* * Signed addition: X = A + b */int mpi_add_int( mpi *X, const mpi *A, t_sint b ){    mpi _B;    t_uint p[1];    p[0] = ( b < 0 ) ? -b : b;    _B.s = ( b < 0 ) ? -1 : 1;    _B.n = 1;    _B.p = p;    return( mpi_add_mpi( X, A, &_B ) );}/* * Signed substraction: X = A - b */int mpi_sub_int( mpi *X, const mpi *A, t_sint b ){    mpi _B;    t_uint p[1];    p[0] = ( b < 0 ) ? -b : b;    _B.s = ( b < 0 ) ? -1 : 1;    _B.n = 1;    _B.p = p;    return( mpi_sub_mpi( X, A, &_B ) );}/* * Helper for mpi multiplication */ static void mpi_mul_hlp( size_t i, t_uint *s, t_uint *d, t_uint b ){    t_uint c = 0, t = 0;#if defined(MULADDC_HUIT)    for( ; i >= 8; i -= 8 )    {        MULADDC_INIT        MULADDC_HUIT        MULADDC_STOP    }    for( ; i > 0; i-- )    {        MULADDC_INIT        MULADDC_CORE        MULADDC_STOP    }#else    for( ; i >= 16; i -= 16 )    {        MULADDC_INIT        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_STOP    }    for( ; i >= 8; i -= 8 )    {        MULADDC_INIT        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_CORE   MULADDC_CORE        MULADDC_STOP    }    for( ; i > 0; i-- )    {        MULADDC_INIT        MULADDC_CORE        MULADDC_STOP    }#endif    t++;    do {        *d += c; c = ( *d < c ); d++;    }    while( c != 0 );}/* * Baseline multiplication: X = A * B  (HAC 14.12) */int mpi_mul_mpi( mpi *X, const mpi *A, const mpi *B ){    int ret;    size_t i, j;    mpi TA, TB;    mpi_init( &TA ); mpi_init( &TB );    if( X == A ) { MPI_CHK( mpi_copy( &TA, A ) ); A = &TA; }    if( X == B ) { MPI_CHK( mpi_copy( &TB, B ) ); B = &TB; }    for( i = A->n; i > 0; i-- )        if( A->p[i - 1] != 0 )            break;    for( j = B->n; j > 0; j-- )        if( B->p[j - 1] != 0 )            break;    MPI_CHK( mpi_grow( X, i + j ) );    MPI_CHK( mpi_lset( X, 0 ) );    for( i++; j > 0; j-- )        mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );    X->s = A->s * B->s;cleanup:    mpi_free( &TB ); mpi_free( &TA );    return( ret );}/* * Baseline multiplication: X = A * b */int mpi_mul_int( mpi *X, const mpi *A, t_sint b ){    mpi _B;    t_uint p[1];    _B.s = 1;    _B.n = 1;    _B.p = p;    p[0] = b;    return( mpi_mul_mpi( X, A, &_B ) );}/* * Division by mpi: A = Q * B + R  (HAC 14.20) */int mpi_div_mpi( mpi *Q, mpi *R, const mpi *A, const mpi *B ){    int ret;    size_t i, n, t, k;    mpi X, Y, Z, T1, T2;    if( mpi_cmp_int( B, 0 ) == 0 )        return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO );    mpi_init( &X ); mpi_init( &Y ); mpi_init( &Z );    mpi_init( &T1 ); mpi_init( &T2 );    if( mpi_cmp_abs( A, B ) < 0 )    {        if( Q != NULL ) MPI_CHK( mpi_lset( Q, 0 ) );        if( R != NULL ) MPI_CHK( mpi_copy( R, A ) );        return( 0 );    }    MPI_CHK( mpi_copy( &X, A ) );    MPI_CHK( mpi_copy( &Y, B ) );    X.s = Y.s = 1;    MPI_CHK( mpi_grow( &Z, A->n + 2 ) );    MPI_CHK( mpi_lset( &Z,  0 ) );    MPI_CHK( mpi_grow( &T1, 2 ) );    MPI_CHK( mpi_grow( &T2, 3 ) );    k = mpi_msb( &Y ) % biL;    if( k < biL - 1 )    {        k = biL - 1 - k;        MPI_CHK( mpi_shift_l( &X, k ) );        MPI_CHK( mpi_shift_l( &Y, k ) );    }    else k = 0;    n = X.n - 1;    t = Y.n - 1;    mpi_shift_l( &Y, biL * (n - t) );    while( mpi_cmp_mpi( &X, &Y ) >= 0 )    {        Z.p[n - t]++;        mpi_sub_mpi( &X, &X, &Y );    }    mpi_shift_r( &Y, biL * (n - t) );    for( i = n; i > t ; i-- )    {        if( X.p[i] >= Y.p[t] )            Z.p[i - t - 1] = ~0;        else        {#if defined(POLARSSL_HAVE_LONGLONG)            t_dbl r;            r  = (t_dbl) X.p[i] << biL;            r |= (t_dbl) X.p[i - 1];            r /= Y.p[t];            if( r > ((t_dbl) 1 << biL) - 1)                r = ((t_dbl) 1 << biL) - 1;            Z.p[i - t - 1] = (t_uint) r;#else            /*             * __udiv_qrnnd_c, from gmp/longlong.h             */            t_uint q0, q1, r0, r1;            t_uint d0, d1, d, m;            d  = Y.p[t];            d0 = ( d << biH ) >> biH;            d1 = ( d >> biH );            q1 = X.p[i] / d1;            r1 = X.p[i] - d1 * q1;            r1 <<= biH;            r1 |= ( X.p[i - 1] >> biH );            m = q1 * d0;            if( r1 < m )            {                q1--, r1 += d;                while( r1 >= d && r1 < m )                    q1--, r1 += d;            }            r1 -= m;            q0 = r1 / d1;            r0 = r1 - d1 * q0;            r0 <<= biH;            r0 |= ( X.p[i - 1] << biH ) >> biH;            m = q0 * d0;            if( r0 < m )            {                q0--, r0 += d;                while( r0 >= d && r0 < m )                    q0--, r0 += d;            }            r0 -= m;            Z.p[i - t - 1] = ( q1 << biH ) | q0;#endif        }        Z.p[i - t - 1]++;        do        {            Z.p[i - t - 1]--;            MPI_CHK( mpi_lset( &T1, 0 ) );            T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];            T1.p[1] = Y.p[t];            MPI_CHK( mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );            MPI_CHK( mpi_lset( &T2, 0 ) );            T2.p[0] = (i < 2) ? 0 : X.p[i - 2];            T2.p[1] = (i < 1) ? 0 : X.p[i - 1];            T2.p[2] = X.p[i];        }        while( mpi_cmp_mpi( &T1, &T2 ) > 0 );        MPI_CHK( mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );        MPI_CHK( mpi_shift_l( &T1,  biL * (i - t - 1) ) );        MPI_CHK( mpi_sub_mpi( &X, &X, &T1 ) );        if( mpi_cmp_int( &X, 0 ) < 0 )        {            MPI_CHK( mpi_copy( &T1, &Y ) );            MPI_CHK( mpi_shift_l( &T1, biL * (i - t - 1) ) );            MPI_CHK( mpi_add_mpi( &X, &X, &T1 ) );            Z.p[i - t - 1]--;        }    }    if( Q != NULL )    {        mpi_copy( Q, &Z );        Q->s = A->s * B->s;    }    if( R != NULL )    {        mpi_shift_r( &X, k );        mpi_copy( R, &X );        R->s = A->s;        if( mpi_cmp_int( R, 0 ) == 0 )            R->s = 1;    }cleanup:    mpi_free( &X ); mpi_free( &Y ); mpi_free( &Z );    mpi_free( &T1 ); mpi_free( &T2 );    return( ret );}/* * Division by int: A = Q * b + R * * Returns 0 if successful *         1 if memory allocation failed *         POLARSSL_ERR_MPI_DIVISION_BY_ZERO if b == 0 */int mpi_div_int( mpi *Q, mpi *R, const mpi *A, t_sint b ){    mpi _B;    t_uint p[1];    p[0] = ( b < 0 ) ? -b : b;    _B.s = ( b < 0 ) ? -1 : 1;    _B.n = 1;    _B.p = p;    return( mpi_div_mpi( Q, R, A, &_B ) );}/* * Modulo: R = A mod B */int mpi_mod_mpi( mpi *R, const mpi *A, const mpi *B ){    int ret;    if( mpi_cmp_int( B, 0 ) < 0 )        return POLARSSL_ERR_MPI_NEGATIVE_VALUE;    MPI_CHK( mpi_div_mpi( NULL, R, A, B ) );    while( mpi_cmp_int( R, 0 ) < 0 )      MPI_CHK( mpi_add_mpi( R, R, B ) );    while( mpi_cmp_mpi( R, B ) >= 0 )      MPI_CHK( mpi_sub_mpi( R, R, B ) );cleanup:    return( ret );}/* * Modulo: r = A mod b */int mpi_mod_int( t_uint *r, const mpi *A, t_sint b ){    size_t i;    t_uint x, y, z;    if( b == 0 )        return( POLARSSL_ERR_MPI_DIVISION_BY_ZERO );    if( b < 0 )        return POLARSSL_ERR_MPI_NEGATIVE_VALUE;    /*     * handle trivial cases     */    if( b == 1 )    {        *r = 0;        return( 0 );    }    if( b == 2 )    {        *r = A->p[0] & 1;        return( 0 );    }    /*     * general case     */    for( i = A->n, y = 0; i > 0; i-- )    {        x  = A->p[i - 1];        y  = ( y << biH ) | ( x >> biH );        z  = y / b;        y -= z * b;        x <<= biH;        y  = ( y << biH ) | ( x >> biH );        z  = y / b;        y -= z * b;    }    /*     * If A is negative, then the current y represents a negative value.     * Flipping it to the positive side.     */    if( A->s < 0 && y != 0 )        y = b - y;    *r = y;    return( 0 );}/* * Fast Montgomery initialization (thanks to Tom St Denis) */static void mpi_montg_init( t_uint *mm, const mpi *N ){    t_uint x, m0 = N->p[0];    x  = m0;    x += ( ( m0 + 2 ) & 4 ) << 1;    x *= ( 2 - ( m0 * x ) );    if( biL >= 16 ) x *= ( 2 - ( m0 * x ) );    if( biL >= 32 ) x *= ( 2 - ( m0 * x ) );    if( biL >= 64 ) x *= ( 2 - ( m0 * x ) );    *mm = ~x + 1;}/* * Montgomery multiplication: A = A * B * R^-1 mod N  (HAC 14.36) */static void mpi_montmul( mpi *A, const mpi *B, const mpi *N, t_uint mm, const mpi *T ){    size_t i, n, m;    t_uint u0, u1, *d;    memset( T->p, 0, T->n * ciL );    d = T->p;    n = N->n;    m = ( B->n < n ) ? B->n : n;    for( i = 0; i < n; i++ )    {        /*         * T = (T + u0*B + u1*N) / 2^biL         */        u0 = A->p[i];        u1 = ( d[0] + u0 * B->p[0] ) * mm;        mpi_mul_hlp( m, B->p, d, u0 );        mpi_mul_hlp( n, N->p, d, u1 );        *d++ = u0; d[n + 1] = 0;    }    memcpy( A->p, d, (n + 1) * ciL );    if( mpi_cmp_abs( A, N ) >= 0 )        mpi_sub_hlp( n, N->p, A->p );    else        /* prevent timing attacks */        mpi_sub_hlp( n, A->p, T->p );}/* * Montgomery reduction: A = A * R^-1 mod N */static void mpi_montred( mpi *A, const mpi *N, t_uint mm, const mpi *T ){    t_uint z = 1;    mpi U;    U.n = U.s = z;    U.p = &z;    mpi_montmul( A, &U, N, mm, T );}/* * Sliding-window exponentiation: X = A^E mod N  (HAC 14.85) */int mpi_exp_mod( mpi *X, const mpi *A, const mpi *E, const mpi *N, mpi *_RR ){    int ret;    size_t wbits, wsize, one = 1;    size_t i, j, nblimbs;    size_t bufsize, nbits;    t_uint ei, mm, state;    mpi RR, T, W[64];    if( mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )        return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );    /*     * Init temps and window size     */    mpi_montg_init( &mm, N );    mpi_init( &RR ); mpi_init( &T );    memset( W, 0, sizeof( W ) );    i = mpi_msb( E );    wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :            ( i >  79 ) ? 4 : ( i >  23 ) ? 3 : 1;    j = N->n + 1;    MPI_CHK( mpi_grow( X, j ) );    MPI_CHK( mpi_grow( &W[1],  j ) );    MPI_CHK( mpi_grow( &T, j * 2 ) );    /*     * If 1st call, pre-compute R^2 mod N     */    if( _RR == NULL || _RR->p == NULL )    {        MPI_CHK( mpi_lset( &RR, 1 ) );        MPI_CHK( mpi_shift_l( &RR, N->n * 2 * biL ) );        MPI_CHK( mpi_mod_mpi( &RR, &RR, N ) );        if( _RR != NULL )            memcpy( _RR, &RR, sizeof( mpi ) );    }    else        memcpy( &RR, _RR, sizeof( mpi ) );    /*     * W[1] = A * R^2 * R^-1 mod N = A * R mod N     */    if( mpi_cmp_mpi( A, N ) >= 0 )        mpi_mod_mpi( &W[1], A, N );    else   mpi_copy( &W[1], A );    mpi_montmul( &W[1], &RR, N, mm, &T );    /*     * X = R^2 * R^-1 mod N = R mod N     */    MPI_CHK( mpi_copy( X, &RR ) );    mpi_montred( X, N, mm, &T );    if( wsize > 1 )    {        /*         * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)         */        j =  one << (wsize - 1);        MPI_CHK( mpi_grow( &W[j], N->n + 1 ) );        MPI_CHK( mpi_copy( &W[j], &W[1]    ) );        for( i = 0; i < wsize - 1; i++ )            mpi_montmul( &W[j], &W[j], N, mm, &T );            /*         * W[i] = W[i - 1] * W[1]         */        for( i = j + 1; i < (one << wsize); i++ )        {            MPI_CHK( mpi_grow( &W[i], N->n + 1 ) );            MPI_CHK( mpi_copy( &W[i], &W[i - 1] ) );            mpi_montmul( &W[i], &W[1], N, mm, &T );        }    }    nblimbs = E->n;    bufsize = 0;    nbits   = 0;    wbits   = 0;    state   = 0;    while( 1 )    {        if( bufsize == 0 )        {            if( nblimbs-- == 0 )                break;            bufsize = sizeof( t_uint ) << 3;        }        bufsize--;        ei = (E->p[nblimbs] >> bufsize) & 1;        /*         * skip leading 0s         */        if( ei == 0 && state == 0 )            continue;        if( ei == 0 && state == 1 )        {            /*             * out of window, square X             */            mpi_montmul( X, X, N, mm, &T );            continue;        }        /*         * add ei to current window         */        state = 2;        nbits++;        wbits |= (ei << (wsize - nbits));        if( nbits == wsize )        {            /*             * X = X^wsize R^-1 mod N             */            for( i = 0; i < wsize; i++ )                mpi_montmul( X, X, N, mm, &T );            /*             * X = X * W[wbits] R^-1 mod N             */            mpi_montmul( X, &W[wbits], N, mm, &T );            state--;            nbits = 0;            wbits = 0;        }    }    /*     * process the remaining bits     */    for( i = 0; i < nbits; i++ )    {        mpi_montmul( X, X, N, mm, &T );        wbits <<= 1;        if( (wbits & (one << wsize)) != 0 )            mpi_montmul( X, &W[1], N, mm, &T );    }    /*     * X = A^E * R * R^-1 mod N = A^E mod N     */    mpi_montred( X, N, mm, &T );cleanup:    for( i = (one << (wsize - 1)); i < (one << wsize); i++ )        mpi_free( &W[i] );    mpi_free( &W[1] ); mpi_free( &T );    if( _RR == NULL )        mpi_free( &RR );    return( ret );}/* * Greatest common divisor: G = gcd(A, B)  (HAC 14.54) */int mpi_gcd( mpi *G, const mpi *A, const mpi *B ){    int ret;    size_t lz, lzt;    mpi TG, TA, TB;    mpi_init( &TG ); mpi_init( &TA ); mpi_init( &TB );    MPI_CHK( mpi_copy( &TA, A ) );    MPI_CHK( mpi_copy( &TB, B ) );    lz = mpi_lsb( &TA );    lzt = mpi_lsb( &TB );    if ( lzt < lz )        lz = lzt;    MPI_CHK( mpi_shift_r( &TA, lz ) );    MPI_CHK( mpi_shift_r( &TB, lz ) );    TA.s = TB.s = 1;    while( mpi_cmp_int( &TA, 0 ) != 0 )    {        MPI_CHK( mpi_shift_r( &TA, mpi_lsb( &TA ) ) );        MPI_CHK( mpi_shift_r( &TB, mpi_lsb( &TB ) ) );        if( mpi_cmp_mpi( &TA, &TB ) >= 0 )        {            MPI_CHK( mpi_sub_abs( &TA, &TA, &TB ) );            MPI_CHK( mpi_shift_r( &TA, 1 ) );        }        else        {            MPI_CHK( mpi_sub_abs( &TB, &TB, &TA ) );            MPI_CHK( mpi_shift_r( &TB, 1 ) );        }    }    MPI_CHK( mpi_shift_l( &TB, lz ) );    MPI_CHK( mpi_copy( G, &TB ) );cleanup:    mpi_free( &TG ); mpi_free( &TA ); mpi_free( &TB );    return( ret );}int mpi_fill_random( mpi *X, size_t size, int (*f_rng)(void *), void *p_rng ){    int ret;    size_t k;    unsigned char *p;    MPI_CHK( mpi_grow( X, size ) );    MPI_CHK( mpi_lset( X, 0 ) );    p = (unsigned char *) X->p;    for( k = 0; k < X->n * ciL; k++ )        *p++ = (unsigned char) f_rng( p_rng );cleanup:    return( ret );}#if defined(POLARSSL_GENPRIME)/* * Modular inverse: X = A^-1 mod N  (HAC 14.61 / 14.64) */int mpi_inv_mod( mpi *X, const mpi *A, const mpi *N ){    int ret;    mpi G, TA, TU, U1, U2, TB, TV, V1, V2;    if( mpi_cmp_int( N, 0 ) <= 0 )        return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );    mpi_init( &TA ); mpi_init( &TU ); mpi_init( &U1 ); mpi_init( &U2 );    mpi_init( &G ); mpi_init( &TB ); mpi_init( &TV );    mpi_init( &V1 ); mpi_init( &V2 );    MPI_CHK( mpi_gcd( &G, A, N ) );    if( mpi_cmp_int( &G, 1 ) != 0 )    {        ret = POLARSSL_ERR_MPI_NOT_ACCEPTABLE;        goto cleanup;    }    MPI_CHK( mpi_mod_mpi( &TA, A, N ) );    MPI_CHK( mpi_copy( &TU, &TA ) );    MPI_CHK( mpi_copy( &TB, N ) );    MPI_CHK( mpi_copy( &TV, N ) );    MPI_CHK( mpi_lset( &U1, 1 ) );    MPI_CHK( mpi_lset( &U2, 0 ) );    MPI_CHK( mpi_lset( &V1, 0 ) );    MPI_CHK( mpi_lset( &V2, 1 ) );    do    {        while( ( TU.p[0] & 1 ) == 0 )        {            MPI_CHK( mpi_shift_r( &TU, 1 ) );            if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )            {                MPI_CHK( mpi_add_mpi( &U1, &U1, &TB ) );                MPI_CHK( mpi_sub_mpi( &U2, &U2, &TA ) );            }            MPI_CHK( mpi_shift_r( &U1, 1 ) );            MPI_CHK( mpi_shift_r( &U2, 1 ) );        }        while( ( TV.p[0] & 1 ) == 0 )        {            MPI_CHK( mpi_shift_r( &TV, 1 ) );            if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )            {                MPI_CHK( mpi_add_mpi( &V1, &V1, &TB ) );                MPI_CHK( mpi_sub_mpi( &V2, &V2, &TA ) );            }            MPI_CHK( mpi_shift_r( &V1, 1 ) );            MPI_CHK( mpi_shift_r( &V2, 1 ) );        }        if( mpi_cmp_mpi( &TU, &TV ) >= 0 )        {            MPI_CHK( mpi_sub_mpi( &TU, &TU, &TV ) );            MPI_CHK( mpi_sub_mpi( &U1, &U1, &V1 ) );            MPI_CHK( mpi_sub_mpi( &U2, &U2, &V2 ) );        }        else        {            MPI_CHK( mpi_sub_mpi( &TV, &TV, &TU ) );            MPI_CHK( mpi_sub_mpi( &V1, &V1, &U1 ) );            MPI_CHK( mpi_sub_mpi( &V2, &V2, &U2 ) );        }    }    while( mpi_cmp_int( &TU, 0 ) != 0 );    while( mpi_cmp_int( &V1, 0 ) < 0 )        MPI_CHK( mpi_add_mpi( &V1, &V1, N ) );    while( mpi_cmp_mpi( &V1, N ) >= 0 )        MPI_CHK( mpi_sub_mpi( &V1, &V1, N ) );    MPI_CHK( mpi_copy( X, &V1 ) );cleanup:    mpi_free( &TA ); mpi_free( &TU ); mpi_free( &U1 ); mpi_free( &U2 );    mpi_free( &G ); mpi_free( &TB ); mpi_free( &TV );    mpi_free( &V1 ); mpi_free( &V2 );    return( ret );}static const int small_prime[] ={        3,    5,    7,   11,   13,   17,   19,   23,       29,   31,   37,   41,   43,   47,   53,   59,       61,   67,   71,   73,   79,   83,   89,   97,      101,  103,  107,  109,  113,  127,  131,  137,      139,  149,  151,  157,  163,  167,  173,  179,      181,  191,  193,  197,  199,  211,  223,  227,      229,  233,  239,  241,  251,  257,  263,  269,      271,  277,  281,  283,  293,  307,  311,  313,      317,  331,  337,  347,  349,  353,  359,  367,      373,  379,  383,  389,  397,  401,  409,  419,      421,  431,  433,  439,  443,  449,  457,  461,      463,  467,  479,  487,  491,  499,  503,  509,      521,  523,  541,  547,  557,  563,  569,  571,      577,  587,  593,  599,  601,  607,  613,  617,      619,  631,  641,  643,  647,  653,  659,  661,      673,  677,  683,  691,  701,  709,  719,  727,      733,  739,  743,  751,  757,  761,  769,  773,      787,  797,  809,  811,  821,  823,  827,  829,      839,  853,  857,  859,  863,  877,  881,  883,      887,  907,  911,  919,  929,  937,  941,  947,      953,  967,  971,  977,  983,  991,  997, -103};/* * Miller-Rabin primality test  (HAC 4.24) */int mpi_is_prime( mpi *X, int (*f_rng)(void *), void *p_rng ){    int ret, xs;    size_t i, j, n, s;    mpi W, R, T, A, RR;    if( mpi_cmp_int( X, 0 ) == 0 ||        mpi_cmp_int( X, 1 ) == 0 )        return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );    if( mpi_cmp_int( X, 2 ) == 0 )        return( 0 );    mpi_init( &W ); mpi_init( &R ); mpi_init( &T ); mpi_init( &A );    mpi_init( &RR );    xs = X->s; X->s = 1;    /*     * test trivial factors first     */    if( ( X->p[0] & 1 ) == 0 )        return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );    for( i = 0; small_prime[i] > 0; i++ )    {        t_uint r;        if( mpi_cmp_int( X, small_prime[i] ) <= 0 )            return( 0 );        MPI_CHK( mpi_mod_int( &r, X, small_prime[i] ) );        if( r == 0 )            return( POLARSSL_ERR_MPI_NOT_ACCEPTABLE );    }    /*     * W = |X| - 1     * R = W >> lsb( W )     */    MPI_CHK( mpi_sub_int( &W, X, 1 ) );    s = mpi_lsb( &W );    MPI_CHK( mpi_copy( &R, &W ) );    MPI_CHK( mpi_shift_r( &R, s ) );    i = mpi_msb( X );    /*     * HAC, table 4.4     */    n = ( ( i >= 1300 ) ?  2 : ( i >=  850 ) ?  3 :          ( i >=  650 ) ?  4 : ( i >=  350 ) ?  8 :          ( i >=  250 ) ? 12 : ( i >=  150 ) ? 18 : 27 );    for( i = 0; i < n; i++ )    {        /*         * pick a random A, 1 < A < |X| - 1         */        mpi_fill_random( &A, X->n, f_rng, p_rng );        if( mpi_cmp_mpi( &A, &W ) >= 0 )        {            j = mpi_msb( &A ) - mpi_msb( &W );            MPI_CHK( mpi_shift_r( &A, j + 1 ) );        }        A.p[0] |= 3;        /*         * A = A^R mod |X|         */        MPI_CHK( mpi_exp_mod( &A, &A, &R, X, &RR ) );        if( mpi_cmp_mpi( &A, &W ) == 0 ||            mpi_cmp_int( &A,  1 ) == 0 )            continue;        j = 1;        while( j < s && mpi_cmp_mpi( &A, &W ) != 0 )        {            /*             * A = A * A mod |X|             */            MPI_CHK( mpi_mul_mpi( &T, &A, &A ) );            MPI_CHK( mpi_mod_mpi( &A, &T, X  ) );            if( mpi_cmp_int( &A, 1 ) == 0 )                break;            j++;        }        /*         * not prime if A != |X| - 1 or A == 1         */        if( mpi_cmp_mpi( &A, &W ) != 0 ||            mpi_cmp_int( &A,  1 ) == 0 )        {            ret = POLARSSL_ERR_MPI_NOT_ACCEPTABLE;            break;        }    }cleanup:    X->s = xs;    mpi_free( &W ); mpi_free( &R ); mpi_free( &T ); mpi_free( &A );    mpi_free( &RR );    return( ret );}/* * Prime number generation */int mpi_gen_prime( mpi *X, size_t nbits, int dh_flag,                   int (*f_rng)(void *), void *p_rng ){    int ret;    size_t k, n;    mpi Y;    if( nbits < 3 || nbits > 4096 )        return( POLARSSL_ERR_MPI_BAD_INPUT_DATA );    mpi_init( &Y );    n = BITS_TO_LIMBS( nbits );    mpi_fill_random( X, n, f_rng, p_rng );    k = mpi_msb( X );    if( k < nbits ) MPI_CHK( mpi_shift_l( X, nbits - k ) );    if( k > nbits ) MPI_CHK( mpi_shift_r( X, k - nbits ) );    X->p[0] |= 3;    if( dh_flag == 0 )    {        while( ( ret = mpi_is_prime( X, f_rng, p_rng ) ) != 0 )        {            if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )                goto cleanup;            MPI_CHK( mpi_add_int( X, X, 2 ) );        }    }    else    {        MPI_CHK( mpi_sub_int( &Y, X, 1 ) );        MPI_CHK( mpi_shift_r( &Y, 1 ) );        while( 1 )        {            if( ( ret = mpi_is_prime( X, f_rng, p_rng ) ) == 0 )            {                if( ( ret = mpi_is_prime( &Y, f_rng, p_rng ) ) == 0 )                    break;                if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )                    goto cleanup;            }            if( ret != POLARSSL_ERR_MPI_NOT_ACCEPTABLE )                goto cleanup;            MPI_CHK( mpi_add_int( &Y, X, 1 ) );            MPI_CHK( mpi_add_int(  X, X, 2 ) );            MPI_CHK( mpi_shift_r( &Y, 1 ) );        }    }cleanup:    mpi_free( &Y );    return( ret );}#endif#if defined(POLARSSL_SELF_TEST)#define GCD_PAIR_COUNT  3static const int gcd_pairs[GCD_PAIR_COUNT][3] ={    { 693, 609, 21 },    { 1764, 868, 28 },    { 768454923, 542167814, 1 }};/* * Checkup routine */int mpi_self_test( int verbose ){    int ret, i;    mpi A, E, N, X, Y, U, V;    mpi_init( &A ); mpi_init( &E ); mpi_init( &N ); mpi_init( &X );    mpi_init( &Y ); mpi_init( &U ); mpi_init( &V );    MPI_CHK( mpi_read_string( &A, 16,        "EFE021C2645FD1DC586E69184AF4A31E" \        "D5F53E93B5F123FA41680867BA110131" \        "944FE7952E2517337780CB0DB80E61AA" \        "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );    MPI_CHK( mpi_read_string( &E, 16,        "B2E7EFD37075B9F03FF989C7C5051C20" \        "34D2A323810251127E7BF8625A4F49A5" \        "F3E27F4DA8BD59C47D6DAABA4C8127BD" \        "5B5C25763222FEFCCFC38B832366C29E" ) );    MPI_CHK( mpi_read_string( &N, 16,        "0066A198186C18C10B2F5ED9B522752A" \        "9830B69916E535C8F047518A889A43A5" \        "94B6BED27A168D31D4A52F88925AA8F5" ) );    MPI_CHK( mpi_mul_mpi( &X, &A, &N ) );    MPI_CHK( mpi_read_string( &U, 16,        "602AB7ECA597A3D6B56FF9829A5E8B85" \        "9E857EA95A03512E2BAE7391688D264A" \        "A5663B0341DB9CCFD2C4C5F421FEC814" \        "8001B72E848A38CAE1C65F78E56ABDEF" \        "E12D3C039B8A02D6BE593F0BBBDA56F1" \        "ECF677152EF804370C1A305CAF3B5BF1" \        "30879B56C61DE584A0F53A2447A51E" ) );    if( verbose != 0 )        printf( "  MPI test #1 (mul_mpi): " );    if( mpi_cmp_mpi( &X, &U ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n" );    MPI_CHK( mpi_div_mpi( &X, &Y, &A, &N ) );    MPI_CHK( mpi_read_string( &U, 16,        "256567336059E52CAE22925474705F39A94" ) );    MPI_CHK( mpi_read_string( &V, 16,        "6613F26162223DF488E9CD48CC132C7A" \        "0AC93C701B001B092E4E5B9F73BCD27B" \        "9EE50D0657C77F374E903CDFA4C642" ) );    if( verbose != 0 )        printf( "  MPI test #2 (div_mpi): " );    if( mpi_cmp_mpi( &X, &U ) != 0 ||        mpi_cmp_mpi( &Y, &V ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n" );    MPI_CHK( mpi_exp_mod( &X, &A, &E, &N, NULL ) );    MPI_CHK( mpi_read_string( &U, 16,        "36E139AEA55215609D2816998ED020BB" \        "BD96C37890F65171D948E9BC7CBAA4D9" \        "325D24D6A3C12710F10A09FA08AB87" ) );    if( verbose != 0 )        printf( "  MPI test #3 (exp_mod): " );    if( mpi_cmp_mpi( &X, &U ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n" );#if defined(POLARSSL_GENPRIME)    MPI_CHK( mpi_inv_mod( &X, &A, &N ) );    MPI_CHK( mpi_read_string( &U, 16,        "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \        "C3DBA76456363A10869622EAC2DD84EC" \        "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );    if( verbose != 0 )        printf( "  MPI test #4 (inv_mod): " );    if( mpi_cmp_mpi( &X, &U ) != 0 )    {        if( verbose != 0 )            printf( "failed\n" );        return( 1 );    }    if( verbose != 0 )        printf( "passed\n" );#endif    if( verbose != 0 )        printf( "  MPI test #5 (simple gcd): " );    for ( i = 0; i < GCD_PAIR_COUNT; i++)    {        MPI_CHK( mpi_lset( &X, gcd_pairs[i][0] ) );        MPI_CHK( mpi_lset( &Y, gcd_pairs[i][1] ) );	    MPI_CHK( mpi_gcd( &A, &X, &Y ) );	    if( mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )	    {		    if( verbose != 0 )			    printf( "failed at %d\n", i );		    return( 1 );	    }    }    if( verbose != 0 )        printf( "passed\n" );cleanup:    if( ret != 0 && verbose != 0 )        printf( "Unexpected error, return code = %08X\n", ret );    mpi_free( &A ); mpi_free( &E ); mpi_free( &N ); mpi_free( &X );    mpi_free( &Y ); mpi_free( &U ); mpi_free( &V );    if( verbose != 0 )        printf( "\n" );    return( ret );}#endif#endif
 |