| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292 | /** * \file ecp_internal.h * * \brief Function declarations for alternative implementation of elliptic curve * point arithmetic. * *  Copyright (C) 2016, ARM Limited, All Rights Reserved *  SPDX-License-Identifier: Apache-2.0 * *  Licensed under the Apache License, Version 2.0 (the "License"); you may *  not use this file except in compliance with the License. *  You may obtain a copy of the License at * *  http://www.apache.org/licenses/LICENSE-2.0 * *  Unless required by applicable law or agreed to in writing, software *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *  See the License for the specific language governing permissions and *  limitations under the License. * *  This file is part of mbed TLS (https://tls.mbed.org) *//* * References: * * [1] BERNSTEIN, Daniel J. Curve25519: new Diffie-Hellman speed records. *     <http://cr.yp.to/ecdh/curve25519-20060209.pdf> * * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis *     for elliptic curve cryptosystems. In : Cryptographic Hardware and *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> * * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to *     render ECC resistant against Side Channel Attacks. IACR Cryptology *     ePrint Archive, 2004, vol. 2004, p. 342. *     <http://eprint.iacr.org/2004/342.pdf> * * [4] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Parameters. *     <http://www.secg.org/sec2-v2.pdf> * * [5] HANKERSON, Darrel, MENEZES, Alfred J., VANSTONE, Scott. Guide to Elliptic *     Curve Cryptography. * * [6] Digital Signature Standard (DSS), FIPS 186-4. *     <http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf> * * [7] Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer  *     Security (TLS), RFC 4492. *     <https://tools.ietf.org/search/rfc4492> * * [8] <http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html> * * [9] COHEN, Henri. A Course in Computational Algebraic Number Theory. *     Springer Science & Business Media, 1 Aug 2000 */#ifndef MBEDTLS_ECP_INTERNAL_H#define MBEDTLS_ECP_INTERNAL_H#if defined(MBEDTLS_ECP_INTERNAL_ALT)/** * \brief           Indicate if the Elliptic Curve Point module extension can *                  handle the group. * * \param grp       The pointer to the elliptic curve group that will be the *                  basis of the cryptographic computations. * * \return          Non-zero if successful. */unsigned char mbedtls_internal_ecp_grp_capable( const mbedtls_ecp_group *grp );/** * \brief           Initialise the Elliptic Curve Point module extension. * *                  If mbedtls_internal_ecp_grp_capable returns true for a *                  group, this function has to be able to initialise the *                  module for it. * *                  This module can be a driver to a crypto hardware *                  accelerator, for which this could be an initialise function. * * \param grp       The pointer to the group the module needs to be *                  initialised for. * * \return          0 if successful. */int mbedtls_internal_ecp_init( const mbedtls_ecp_group *grp );/** * \brief           Frees and deallocates the Elliptic Curve Point module *                  extension. * * \param grp       The pointer to the group the module was initialised for. */void mbedtls_internal_ecp_free( const mbedtls_ecp_group *grp );#if defined(ECP_SHORTWEIERSTRASS)#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)/** * \brief           Randomize jacobian coordinates: *                  (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l. * * \param grp       Pointer to the group representing the curve. * * \param pt        The point on the curve to be randomised, given with Jacobian *                  coordinates. * * \param f_rng     A function pointer to the random number generator. * * \param p_rng     A pointer to the random number generator state. * * \return          0 if successful. */int mbedtls_internal_ecp_randomize_jac( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t),        void *p_rng );#endif#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)/** * \brief           Addition: R = P + Q, mixed affine-Jacobian coordinates. * *                  The coordinates of Q must be normalized (= affine), *                  but those of P don't need to. R is not normalized. * *                  This function is used only as a subrutine of *                  ecp_mul_comb(). * *                  Special cases: (1) P or Q is zero, (2) R is zero, *                      (3) P == Q. *                  None of these cases can happen as intermediate step in *                  ecp_mul_comb(): *                      - at each step, P, Q and R are multiples of the base *                      point, the factor being less than its order, so none of *                      them is zero; *                      - Q is an odd multiple of the base point, P an even *                      multiple, due to the choice of precomputed points in the *                      modified comb method. *                  So branches for these cases do not leak secret information. * *                  We accept Q->Z being unset (saving memory in tables) as *                  meaning 1. * *                  Cost in field operations if done by [5] 3.22: *                      1A := 8M + 3S * * \param grp       Pointer to the group representing the curve. * * \param R         Pointer to a point structure to hold the result. * * \param P         Pointer to the first summand, given with Jacobian *                  coordinates * * \param Q         Pointer to the second summand, given with affine *                  coordinates. * * \return          0 if successful. */int mbedtls_internal_ecp_add_mixed( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *R, const mbedtls_ecp_point *P,        const mbedtls_ecp_point *Q );#endif/** * \brief           Point doubling R = 2 P, Jacobian coordinates. * *                  Cost:   1D := 3M + 4S    (A ==  0) *                          4M + 4S          (A == -3) *                          3M + 6S + 1a     otherwise *                  when the implementation is based on the "dbl-1998-cmo-2" *                  doubling formulas in [8] and standard optimizations are *                  applied when curve parameter A is one of { 0, -3 }. * * \param grp       Pointer to the group representing the curve. * * \param R         Pointer to a point structure to hold the result. * * \param P         Pointer to the point that has to be doubled, given with *                  Jacobian coordinates. * * \return          0 if successful. */#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)int mbedtls_internal_ecp_double_jac( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *R, const mbedtls_ecp_point *P );#endif/** * \brief           Normalize jacobian coordinates of an array of (pointers to) *                  points. * *                  Using Montgomery's trick to perform only one inversion mod P *                  the cost is: *                      1N(t) := 1I + (6t - 3)M + 1S *                  (See for example Algorithm 10.3.4. in [9]) * *                  This function is used only as a subrutine of *                  ecp_mul_comb(). * *                  Warning: fails (returning an error) if one of the points is *                  zero! *                  This should never happen, see choice of w in ecp_mul_comb(). * * \param grp       Pointer to the group representing the curve. * * \param T         Array of pointers to the points to normalise. * * \param t_len     Number of elements in the array. * * \return          0 if successful, *                      an error if one of the points is zero. */#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)int mbedtls_internal_ecp_normalize_jac_many( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *T[], size_t t_len );#endif/** * \brief           Normalize jacobian coordinates so that Z == 0 || Z == 1. * *                  Cost in field operations if done by [5] 3.2.1: *                      1N := 1I + 3M + 1S * * \param grp       Pointer to the group representing the curve. * * \param pt        pointer to the point to be normalised. This is an *                  input/output parameter. * * \return          0 if successful. */#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)int mbedtls_internal_ecp_normalize_jac( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *pt );#endif#endif /* ECP_SHORTWEIERSTRASS */#if defined(ECP_MONTGOMERY)#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)int mbedtls_internal_ecp_double_add_mxz( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P,        const mbedtls_ecp_point *Q, const mbedtls_mpi *d );#endif/** * \brief           Randomize projective x/z coordinates: *                      (X, Z) -> (l X, l Z) for random l * * \param grp       pointer to the group representing the curve * * \param P         the point on the curve to be randomised given with *                  projective coordinates. This is an input/output parameter. * * \param f_rng     a function pointer to the random number generator * * \param p_rng     a pointer to the random number generator state * * \return          0 if successful */#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)int mbedtls_internal_ecp_randomize_mxz( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t),        void *p_rng );#endif/** * \brief           Normalize Montgomery x/z coordinates: X = X/Z, Z = 1. * * \param grp       pointer to the group representing the curve * * \param P         pointer to the point to be normalised. This is an *                  input/output parameter. * * \return          0 if successful */#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)int mbedtls_internal_ecp_normalize_mxz( const mbedtls_ecp_group *grp,        mbedtls_ecp_point *P );#endif#endif /* ECP_MONTGOMERY */#endif /* MBEDTLS_ECP_INTERNAL_ALT */#endif /* ecp_internal.h */
 |