bignum.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442
  1. /*
  2. * Multi-precision integer library
  3. *
  4. * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
  5. * SPDX-License-Identifier: Apache-2.0
  6. *
  7. * Licensed under the Apache License, Version 2.0 (the "License"); you may
  8. * not use this file except in compliance with the License.
  9. * You may obtain a copy of the License at
  10. *
  11. * http://www.apache.org/licenses/LICENSE-2.0
  12. *
  13. * Unless required by applicable law or agreed to in writing, software
  14. * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
  15. * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  16. * See the License for the specific language governing permissions and
  17. * limitations under the License.
  18. *
  19. * This file is part of mbed TLS (https://tls.mbed.org)
  20. */
  21. /*
  22. * The following sources were referenced in the design of this Multi-precision
  23. * Integer library:
  24. *
  25. * [1] Handbook of Applied Cryptography - 1997
  26. * Menezes, van Oorschot and Vanstone
  27. *
  28. * [2] Multi-Precision Math
  29. * Tom St Denis
  30. * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
  31. *
  32. * [3] GNU Multi-Precision Arithmetic Library
  33. * https://gmplib.org/manual/index.html
  34. *
  35. */
  36. #if !defined(MBEDTLS_CONFIG_FILE)
  37. #include "mbedtls/config.h"
  38. #else
  39. #include MBEDTLS_CONFIG_FILE
  40. #endif
  41. #if defined(MBEDTLS_BIGNUM_C)
  42. #include "mbedtls/bignum.h"
  43. #include "mbedtls/bn_mul.h"
  44. #include <string.h>
  45. #if defined(MBEDTLS_PLATFORM_C)
  46. #include "mbedtls/platform.h"
  47. #else
  48. #include <stdio.h>
  49. #include <stdlib.h>
  50. #define mbedtls_printf printf
  51. #define mbedtls_calloc calloc
  52. #define mbedtls_free free
  53. #endif
  54. /* Implementation that should never be optimized out by the compiler */
  55. static void mbedtls_mpi_zeroize( mbedtls_mpi_uint *v, size_t n ) {
  56. volatile mbedtls_mpi_uint *p = v; while( n-- ) *p++ = 0;
  57. }
  58. #define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
  59. #define biL (ciL << 3) /* bits in limb */
  60. #define biH (ciL << 2) /* half limb size */
  61. #define MPI_SIZE_T_MAX ( (size_t) -1 ) /* SIZE_T_MAX is not standard */
  62. /*
  63. * Convert between bits/chars and number of limbs
  64. * Divide first in order to avoid potential overflows
  65. */
  66. #define BITS_TO_LIMBS(i) ( (i) / biL + ( (i) % biL != 0 ) )
  67. #define CHARS_TO_LIMBS(i) ( (i) / ciL + ( (i) % ciL != 0 ) )
  68. /*
  69. * Initialize one MPI
  70. */
  71. void mbedtls_mpi_init( mbedtls_mpi *X )
  72. {
  73. if( X == NULL )
  74. return;
  75. X->s = 1;
  76. X->n = 0;
  77. X->p = NULL;
  78. }
  79. /*
  80. * Unallocate one MPI
  81. */
  82. void mbedtls_mpi_free( mbedtls_mpi *X )
  83. {
  84. if( X == NULL )
  85. return;
  86. if( X->p != NULL )
  87. {
  88. mbedtls_mpi_zeroize( X->p, X->n );
  89. mbedtls_free( X->p );
  90. }
  91. X->s = 1;
  92. X->n = 0;
  93. X->p = NULL;
  94. }
  95. /*
  96. * Enlarge to the specified number of limbs
  97. */
  98. int mbedtls_mpi_grow( mbedtls_mpi *X, size_t nblimbs )
  99. {
  100. mbedtls_mpi_uint *p;
  101. if( nblimbs > MBEDTLS_MPI_MAX_LIMBS )
  102. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  103. if( X->n < nblimbs )
  104. {
  105. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( nblimbs, ciL ) ) == NULL )
  106. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  107. if( X->p != NULL )
  108. {
  109. memcpy( p, X->p, X->n * ciL );
  110. mbedtls_mpi_zeroize( X->p, X->n );
  111. mbedtls_free( X->p );
  112. }
  113. X->n = nblimbs;
  114. X->p = p;
  115. }
  116. return( 0 );
  117. }
  118. /*
  119. * Resize down as much as possible,
  120. * while keeping at least the specified number of limbs
  121. */
  122. int mbedtls_mpi_shrink( mbedtls_mpi *X, size_t nblimbs )
  123. {
  124. mbedtls_mpi_uint *p;
  125. size_t i;
  126. /* Actually resize up in this case */
  127. if( X->n <= nblimbs )
  128. return( mbedtls_mpi_grow( X, nblimbs ) );
  129. for( i = X->n - 1; i > 0; i-- )
  130. if( X->p[i] != 0 )
  131. break;
  132. i++;
  133. if( i < nblimbs )
  134. i = nblimbs;
  135. if( ( p = (mbedtls_mpi_uint*)mbedtls_calloc( i, ciL ) ) == NULL )
  136. return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
  137. if( X->p != NULL )
  138. {
  139. memcpy( p, X->p, i * ciL );
  140. mbedtls_mpi_zeroize( X->p, X->n );
  141. mbedtls_free( X->p );
  142. }
  143. X->n = i;
  144. X->p = p;
  145. return( 0 );
  146. }
  147. /*
  148. * Copy the contents of Y into X
  149. */
  150. int mbedtls_mpi_copy( mbedtls_mpi *X, const mbedtls_mpi *Y )
  151. {
  152. int ret;
  153. size_t i;
  154. if( X == Y )
  155. return( 0 );
  156. if( Y->p == NULL )
  157. {
  158. mbedtls_mpi_free( X );
  159. return( 0 );
  160. }
  161. for( i = Y->n - 1; i > 0; i-- )
  162. if( Y->p[i] != 0 )
  163. break;
  164. i++;
  165. X->s = Y->s;
  166. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i ) );
  167. memset( X->p, 0, X->n * ciL );
  168. memcpy( X->p, Y->p, i * ciL );
  169. cleanup:
  170. return( ret );
  171. }
  172. /*
  173. * Swap the contents of X and Y
  174. */
  175. void mbedtls_mpi_swap( mbedtls_mpi *X, mbedtls_mpi *Y )
  176. {
  177. mbedtls_mpi T;
  178. memcpy( &T, X, sizeof( mbedtls_mpi ) );
  179. memcpy( X, Y, sizeof( mbedtls_mpi ) );
  180. memcpy( Y, &T, sizeof( mbedtls_mpi ) );
  181. }
  182. /*
  183. * Conditionally assign X = Y, without leaking information
  184. * about whether the assignment was made or not.
  185. * (Leaking information about the respective sizes of X and Y is ok however.)
  186. */
  187. int mbedtls_mpi_safe_cond_assign( mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign )
  188. {
  189. int ret = 0;
  190. size_t i;
  191. /* make sure assign is 0 or 1 in a time-constant manner */
  192. assign = (assign | (unsigned char)-assign) >> 7;
  193. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  194. X->s = X->s * ( 1 - assign ) + Y->s * assign;
  195. for( i = 0; i < Y->n; i++ )
  196. X->p[i] = X->p[i] * ( 1 - assign ) + Y->p[i] * assign;
  197. for( ; i < X->n; i++ )
  198. X->p[i] *= ( 1 - assign );
  199. cleanup:
  200. return( ret );
  201. }
  202. /*
  203. * Conditionally swap X and Y, without leaking information
  204. * about whether the swap was made or not.
  205. * Here it is not ok to simply swap the pointers, which whould lead to
  206. * different memory access patterns when X and Y are used afterwards.
  207. */
  208. int mbedtls_mpi_safe_cond_swap( mbedtls_mpi *X, mbedtls_mpi *Y, unsigned char swap )
  209. {
  210. int ret, s;
  211. size_t i;
  212. mbedtls_mpi_uint tmp;
  213. if( X == Y )
  214. return( 0 );
  215. /* make sure swap is 0 or 1 in a time-constant manner */
  216. swap = (swap | (unsigned char)-swap) >> 7;
  217. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, Y->n ) );
  218. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( Y, X->n ) );
  219. s = X->s;
  220. X->s = X->s * ( 1 - swap ) + Y->s * swap;
  221. Y->s = Y->s * ( 1 - swap ) + s * swap;
  222. for( i = 0; i < X->n; i++ )
  223. {
  224. tmp = X->p[i];
  225. X->p[i] = X->p[i] * ( 1 - swap ) + Y->p[i] * swap;
  226. Y->p[i] = Y->p[i] * ( 1 - swap ) + tmp * swap;
  227. }
  228. cleanup:
  229. return( ret );
  230. }
  231. /*
  232. * Set value from integer
  233. */
  234. int mbedtls_mpi_lset( mbedtls_mpi *X, mbedtls_mpi_sint z )
  235. {
  236. int ret;
  237. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, 1 ) );
  238. memset( X->p, 0, X->n * ciL );
  239. X->p[0] = ( z < 0 ) ? -z : z;
  240. X->s = ( z < 0 ) ? -1 : 1;
  241. cleanup:
  242. return( ret );
  243. }
  244. /*
  245. * Get a specific bit
  246. */
  247. int mbedtls_mpi_get_bit( const mbedtls_mpi *X, size_t pos )
  248. {
  249. if( X->n * biL <= pos )
  250. return( 0 );
  251. return( ( X->p[pos / biL] >> ( pos % biL ) ) & 0x01 );
  252. }
  253. /*
  254. * Set a bit to a specific value of 0 or 1
  255. */
  256. int mbedtls_mpi_set_bit( mbedtls_mpi *X, size_t pos, unsigned char val )
  257. {
  258. int ret = 0;
  259. size_t off = pos / biL;
  260. size_t idx = pos % biL;
  261. if( val != 0 && val != 1 )
  262. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  263. if( X->n * biL <= pos )
  264. {
  265. if( val == 0 )
  266. return( 0 );
  267. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, off + 1 ) );
  268. }
  269. X->p[off] &= ~( (mbedtls_mpi_uint) 0x01 << idx );
  270. X->p[off] |= (mbedtls_mpi_uint) val << idx;
  271. cleanup:
  272. return( ret );
  273. }
  274. /*
  275. * Return the number of less significant zero-bits
  276. */
  277. size_t mbedtls_mpi_lsb( const mbedtls_mpi *X )
  278. {
  279. size_t i, j, count = 0;
  280. for( i = 0; i < X->n; i++ )
  281. for( j = 0; j < biL; j++, count++ )
  282. if( ( ( X->p[i] >> j ) & 1 ) != 0 )
  283. return( count );
  284. return( 0 );
  285. }
  286. /*
  287. * Count leading zero bits in a given integer
  288. */
  289. static size_t mbedtls_clz( const mbedtls_mpi_uint x )
  290. {
  291. size_t j;
  292. mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
  293. for( j = 0; j < biL; j++ )
  294. {
  295. if( x & mask ) break;
  296. mask >>= 1;
  297. }
  298. return j;
  299. }
  300. /*
  301. * Return the number of bits
  302. */
  303. size_t mbedtls_mpi_bitlen( const mbedtls_mpi *X )
  304. {
  305. size_t i, j;
  306. if( X->n == 0 )
  307. return( 0 );
  308. for( i = X->n - 1; i > 0; i-- )
  309. if( X->p[i] != 0 )
  310. break;
  311. j = biL - mbedtls_clz( X->p[i] );
  312. return( ( i * biL ) + j );
  313. }
  314. /*
  315. * Return the total size in bytes
  316. */
  317. size_t mbedtls_mpi_size( const mbedtls_mpi *X )
  318. {
  319. return( ( mbedtls_mpi_bitlen( X ) + 7 ) >> 3 );
  320. }
  321. /*
  322. * Convert an ASCII character to digit value
  323. */
  324. static int mpi_get_digit( mbedtls_mpi_uint *d, int radix, char c )
  325. {
  326. *d = 255;
  327. if( c >= 0x30 && c <= 0x39 ) *d = c - 0x30;
  328. if( c >= 0x41 && c <= 0x46 ) *d = c - 0x37;
  329. if( c >= 0x61 && c <= 0x66 ) *d = c - 0x57;
  330. if( *d >= (mbedtls_mpi_uint) radix )
  331. return( MBEDTLS_ERR_MPI_INVALID_CHARACTER );
  332. return( 0 );
  333. }
  334. /*
  335. * Import from an ASCII string
  336. */
  337. int mbedtls_mpi_read_string( mbedtls_mpi *X, int radix, const char *s )
  338. {
  339. int ret;
  340. size_t i, j, slen, n;
  341. mbedtls_mpi_uint d;
  342. mbedtls_mpi T;
  343. if( radix < 2 || radix > 16 )
  344. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  345. mbedtls_mpi_init( &T );
  346. slen = strlen( s );
  347. if( radix == 16 )
  348. {
  349. if( slen > MPI_SIZE_T_MAX >> 2 )
  350. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  351. n = BITS_TO_LIMBS( slen << 2 );
  352. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, n ) );
  353. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  354. for( i = slen, j = 0; i > 0; i--, j++ )
  355. {
  356. if( i == 1 && s[i - 1] == '-' )
  357. {
  358. X->s = -1;
  359. break;
  360. }
  361. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i - 1] ) );
  362. X->p[j / ( 2 * ciL )] |= d << ( ( j % ( 2 * ciL ) ) << 2 );
  363. }
  364. }
  365. else
  366. {
  367. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  368. for( i = 0; i < slen; i++ )
  369. {
  370. if( i == 0 && s[i] == '-' )
  371. {
  372. X->s = -1;
  373. continue;
  374. }
  375. MBEDTLS_MPI_CHK( mpi_get_digit( &d, radix, s[i] ) );
  376. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T, X, radix ) );
  377. if( X->s == 1 )
  378. {
  379. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, &T, d ) );
  380. }
  381. else
  382. {
  383. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( X, &T, d ) );
  384. }
  385. }
  386. }
  387. cleanup:
  388. mbedtls_mpi_free( &T );
  389. return( ret );
  390. }
  391. /*
  392. * Helper to write the digits high-order first
  393. */
  394. static int mpi_write_hlp( mbedtls_mpi *X, int radix, char **p )
  395. {
  396. int ret;
  397. mbedtls_mpi_uint r;
  398. if( radix < 2 || radix > 16 )
  399. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  400. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, radix ) );
  401. MBEDTLS_MPI_CHK( mbedtls_mpi_div_int( X, NULL, X, radix ) );
  402. if( mbedtls_mpi_cmp_int( X, 0 ) != 0 )
  403. MBEDTLS_MPI_CHK( mpi_write_hlp( X, radix, p ) );
  404. if( r < 10 )
  405. *(*p)++ = (char)( r + 0x30 );
  406. else
  407. *(*p)++ = (char)( r + 0x37 );
  408. cleanup:
  409. return( ret );
  410. }
  411. /*
  412. * Export into an ASCII string
  413. */
  414. int mbedtls_mpi_write_string( const mbedtls_mpi *X, int radix,
  415. char *buf, size_t buflen, size_t *olen )
  416. {
  417. int ret = 0;
  418. size_t n;
  419. char *p;
  420. mbedtls_mpi T;
  421. if( radix < 2 || radix > 16 )
  422. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  423. n = mbedtls_mpi_bitlen( X );
  424. if( radix >= 4 ) n >>= 1;
  425. if( radix >= 16 ) n >>= 1;
  426. n += 3;
  427. if( buflen < n )
  428. {
  429. *olen = n;
  430. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  431. }
  432. p = buf;
  433. mbedtls_mpi_init( &T );
  434. if( X->s == -1 )
  435. *p++ = '-';
  436. if( radix == 16 )
  437. {
  438. int c;
  439. size_t i, j, k;
  440. for( i = X->n, k = 0; i > 0; i-- )
  441. {
  442. for( j = ciL; j > 0; j-- )
  443. {
  444. c = ( X->p[i - 1] >> ( ( j - 1 ) << 3) ) & 0xFF;
  445. if( c == 0 && k == 0 && ( i + j ) != 2 )
  446. continue;
  447. *(p++) = "0123456789ABCDEF" [c / 16];
  448. *(p++) = "0123456789ABCDEF" [c % 16];
  449. k = 1;
  450. }
  451. }
  452. }
  453. else
  454. {
  455. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T, X ) );
  456. if( T.s == -1 )
  457. T.s = 1;
  458. MBEDTLS_MPI_CHK( mpi_write_hlp( &T, radix, &p ) );
  459. }
  460. *p++ = '\0';
  461. *olen = p - buf;
  462. cleanup:
  463. mbedtls_mpi_free( &T );
  464. return( ret );
  465. }
  466. #if defined(MBEDTLS_FS_IO)
  467. /*
  468. * Read X from an opened file
  469. */
  470. int mbedtls_mpi_read_file( mbedtls_mpi *X, int radix, FILE *fin )
  471. {
  472. mbedtls_mpi_uint d;
  473. size_t slen;
  474. char *p;
  475. /*
  476. * Buffer should have space for (short) label and decimal formatted MPI,
  477. * newline characters and '\0'
  478. */
  479. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  480. memset( s, 0, sizeof( s ) );
  481. if( fgets( s, sizeof( s ) - 1, fin ) == NULL )
  482. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  483. slen = strlen( s );
  484. if( slen == sizeof( s ) - 2 )
  485. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  486. if( s[slen - 1] == '\n' ) { slen--; s[slen] = '\0'; }
  487. if( s[slen - 1] == '\r' ) { slen--; s[slen] = '\0'; }
  488. p = s + slen;
  489. while( --p >= s )
  490. if( mpi_get_digit( &d, radix, *p ) != 0 )
  491. break;
  492. return( mbedtls_mpi_read_string( X, radix, p + 1 ) );
  493. }
  494. /*
  495. * Write X into an opened file (or stdout if fout == NULL)
  496. */
  497. int mbedtls_mpi_write_file( const char *p, const mbedtls_mpi *X, int radix, FILE *fout )
  498. {
  499. int ret;
  500. size_t n, slen, plen;
  501. /*
  502. * Buffer should have space for (short) label and decimal formatted MPI,
  503. * newline characters and '\0'
  504. */
  505. char s[ MBEDTLS_MPI_RW_BUFFER_SIZE ];
  506. memset( s, 0, sizeof( s ) );
  507. MBEDTLS_MPI_CHK( mbedtls_mpi_write_string( X, radix, s, sizeof( s ) - 2, &n ) );
  508. if( p == NULL ) p = "";
  509. plen = strlen( p );
  510. slen = strlen( s );
  511. s[slen++] = '\r';
  512. s[slen++] = '\n';
  513. if( fout != NULL )
  514. {
  515. if( fwrite( p, 1, plen, fout ) != plen ||
  516. fwrite( s, 1, slen, fout ) != slen )
  517. return( MBEDTLS_ERR_MPI_FILE_IO_ERROR );
  518. }
  519. else
  520. mbedtls_printf( "%s%s", p, s );
  521. cleanup:
  522. return( ret );
  523. }
  524. #endif /* MBEDTLS_FS_IO */
  525. /*
  526. * Import X from unsigned binary data, big endian
  527. */
  528. int mbedtls_mpi_read_binary( mbedtls_mpi *X, const unsigned char *buf, size_t buflen )
  529. {
  530. int ret;
  531. size_t i, j, n;
  532. for( n = 0; n < buflen; n++ )
  533. if( buf[n] != 0 )
  534. break;
  535. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, CHARS_TO_LIMBS( buflen - n ) ) );
  536. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  537. for( i = buflen, j = 0; i > n; i--, j++ )
  538. X->p[j / ciL] |= ((mbedtls_mpi_uint) buf[i - 1]) << ((j % ciL) << 3);
  539. cleanup:
  540. return( ret );
  541. }
  542. /*
  543. * Export X into unsigned binary data, big endian
  544. */
  545. int mbedtls_mpi_write_binary( const mbedtls_mpi *X, unsigned char *buf, size_t buflen )
  546. {
  547. size_t i, j, n;
  548. n = mbedtls_mpi_size( X );
  549. if( buflen < n )
  550. return( MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL );
  551. memset( buf, 0, buflen );
  552. for( i = buflen - 1, j = 0; n > 0; i--, j++, n-- )
  553. buf[i] = (unsigned char)( X->p[j / ciL] >> ((j % ciL) << 3) );
  554. return( 0 );
  555. }
  556. /*
  557. * Left-shift: X <<= count
  558. */
  559. int mbedtls_mpi_shift_l( mbedtls_mpi *X, size_t count )
  560. {
  561. int ret;
  562. size_t i, v0, t1;
  563. mbedtls_mpi_uint r0 = 0, r1;
  564. v0 = count / (biL );
  565. t1 = count & (biL - 1);
  566. i = mbedtls_mpi_bitlen( X ) + count;
  567. if( X->n * biL < i )
  568. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, BITS_TO_LIMBS( i ) ) );
  569. ret = 0;
  570. /*
  571. * shift by count / limb_size
  572. */
  573. if( v0 > 0 )
  574. {
  575. for( i = X->n; i > v0; i-- )
  576. X->p[i - 1] = X->p[i - v0 - 1];
  577. for( ; i > 0; i-- )
  578. X->p[i - 1] = 0;
  579. }
  580. /*
  581. * shift by count % limb_size
  582. */
  583. if( t1 > 0 )
  584. {
  585. for( i = v0; i < X->n; i++ )
  586. {
  587. r1 = X->p[i] >> (biL - t1);
  588. X->p[i] <<= t1;
  589. X->p[i] |= r0;
  590. r0 = r1;
  591. }
  592. }
  593. cleanup:
  594. return( ret );
  595. }
  596. /*
  597. * Right-shift: X >>= count
  598. */
  599. int mbedtls_mpi_shift_r( mbedtls_mpi *X, size_t count )
  600. {
  601. size_t i, v0, v1;
  602. mbedtls_mpi_uint r0 = 0, r1;
  603. v0 = count / biL;
  604. v1 = count & (biL - 1);
  605. if( v0 > X->n || ( v0 == X->n && v1 > 0 ) )
  606. return mbedtls_mpi_lset( X, 0 );
  607. /*
  608. * shift by count / limb_size
  609. */
  610. if( v0 > 0 )
  611. {
  612. for( i = 0; i < X->n - v0; i++ )
  613. X->p[i] = X->p[i + v0];
  614. for( ; i < X->n; i++ )
  615. X->p[i] = 0;
  616. }
  617. /*
  618. * shift by count % limb_size
  619. */
  620. if( v1 > 0 )
  621. {
  622. for( i = X->n; i > 0; i-- )
  623. {
  624. r1 = X->p[i - 1] << (biL - v1);
  625. X->p[i - 1] >>= v1;
  626. X->p[i - 1] |= r0;
  627. r0 = r1;
  628. }
  629. }
  630. return( 0 );
  631. }
  632. /*
  633. * Compare unsigned values
  634. */
  635. int mbedtls_mpi_cmp_abs( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  636. {
  637. size_t i, j;
  638. for( i = X->n; i > 0; i-- )
  639. if( X->p[i - 1] != 0 )
  640. break;
  641. for( j = Y->n; j > 0; j-- )
  642. if( Y->p[j - 1] != 0 )
  643. break;
  644. if( i == 0 && j == 0 )
  645. return( 0 );
  646. if( i > j ) return( 1 );
  647. if( j > i ) return( -1 );
  648. for( ; i > 0; i-- )
  649. {
  650. if( X->p[i - 1] > Y->p[i - 1] ) return( 1 );
  651. if( X->p[i - 1] < Y->p[i - 1] ) return( -1 );
  652. }
  653. return( 0 );
  654. }
  655. /*
  656. * Compare signed values
  657. */
  658. int mbedtls_mpi_cmp_mpi( const mbedtls_mpi *X, const mbedtls_mpi *Y )
  659. {
  660. size_t i, j;
  661. for( i = X->n; i > 0; i-- )
  662. if( X->p[i - 1] != 0 )
  663. break;
  664. for( j = Y->n; j > 0; j-- )
  665. if( Y->p[j - 1] != 0 )
  666. break;
  667. if( i == 0 && j == 0 )
  668. return( 0 );
  669. if( i > j ) return( X->s );
  670. if( j > i ) return( -Y->s );
  671. if( X->s > 0 && Y->s < 0 ) return( 1 );
  672. if( Y->s > 0 && X->s < 0 ) return( -1 );
  673. for( ; i > 0; i-- )
  674. {
  675. if( X->p[i - 1] > Y->p[i - 1] ) return( X->s );
  676. if( X->p[i - 1] < Y->p[i - 1] ) return( -X->s );
  677. }
  678. return( 0 );
  679. }
  680. /*
  681. * Compare signed values
  682. */
  683. int mbedtls_mpi_cmp_int( const mbedtls_mpi *X, mbedtls_mpi_sint z )
  684. {
  685. mbedtls_mpi Y;
  686. mbedtls_mpi_uint p[1];
  687. *p = ( z < 0 ) ? -z : z;
  688. Y.s = ( z < 0 ) ? -1 : 1;
  689. Y.n = 1;
  690. Y.p = p;
  691. return( mbedtls_mpi_cmp_mpi( X, &Y ) );
  692. }
  693. /*
  694. * Unsigned addition: X = |A| + |B| (HAC 14.7)
  695. */
  696. int mbedtls_mpi_add_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  697. {
  698. int ret;
  699. size_t i, j;
  700. mbedtls_mpi_uint *o, *p, c, tmp;
  701. if( X == B )
  702. {
  703. const mbedtls_mpi *T = A; A = X; B = T;
  704. }
  705. if( X != A )
  706. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  707. /*
  708. * X should always be positive as a result of unsigned additions.
  709. */
  710. X->s = 1;
  711. for( j = B->n; j > 0; j-- )
  712. if( B->p[j - 1] != 0 )
  713. break;
  714. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  715. o = B->p; p = X->p; c = 0;
  716. /*
  717. * tmp is used because it might happen that p == o
  718. */
  719. for( i = 0; i < j; i++, o++, p++ )
  720. {
  721. tmp= *o;
  722. *p += c; c = ( *p < c );
  723. *p += tmp; c += ( *p < tmp );
  724. }
  725. while( c != 0 )
  726. {
  727. if( i >= X->n )
  728. {
  729. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + 1 ) );
  730. p = X->p + i;
  731. }
  732. *p += c; c = ( *p < c ); i++; p++;
  733. }
  734. cleanup:
  735. return( ret );
  736. }
  737. /*
  738. * Helper for mbedtls_mpi subtraction
  739. */
  740. static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d )
  741. {
  742. size_t i;
  743. mbedtls_mpi_uint c, z;
  744. for( i = c = 0; i < n; i++, s++, d++ )
  745. {
  746. z = ( *d < c ); *d -= c;
  747. c = ( *d < *s ) + z; *d -= *s;
  748. }
  749. while( c != 0 )
  750. {
  751. z = ( *d < c ); *d -= c;
  752. c = z; i++; d++;
  753. }
  754. }
  755. /*
  756. * Unsigned subtraction: X = |A| - |B| (HAC 14.9)
  757. */
  758. int mbedtls_mpi_sub_abs( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  759. {
  760. mbedtls_mpi TB;
  761. int ret;
  762. size_t n;
  763. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  764. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  765. mbedtls_mpi_init( &TB );
  766. if( X == B )
  767. {
  768. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  769. B = &TB;
  770. }
  771. if( X != A )
  772. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, A ) );
  773. /*
  774. * X should always be positive as a result of unsigned subtractions.
  775. */
  776. X->s = 1;
  777. ret = 0;
  778. for( n = B->n; n > 0; n-- )
  779. if( B->p[n - 1] != 0 )
  780. break;
  781. mpi_sub_hlp( n, B->p, X->p );
  782. cleanup:
  783. mbedtls_mpi_free( &TB );
  784. return( ret );
  785. }
  786. /*
  787. * Signed addition: X = A + B
  788. */
  789. int mbedtls_mpi_add_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  790. {
  791. int ret, s = A->s;
  792. if( A->s * B->s < 0 )
  793. {
  794. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  795. {
  796. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  797. X->s = s;
  798. }
  799. else
  800. {
  801. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  802. X->s = -s;
  803. }
  804. }
  805. else
  806. {
  807. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  808. X->s = s;
  809. }
  810. cleanup:
  811. return( ret );
  812. }
  813. /*
  814. * Signed subtraction: X = A - B
  815. */
  816. int mbedtls_mpi_sub_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  817. {
  818. int ret, s = A->s;
  819. if( A->s * B->s > 0 )
  820. {
  821. if( mbedtls_mpi_cmp_abs( A, B ) >= 0 )
  822. {
  823. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, A, B ) );
  824. X->s = s;
  825. }
  826. else
  827. {
  828. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( X, B, A ) );
  829. X->s = -s;
  830. }
  831. }
  832. else
  833. {
  834. MBEDTLS_MPI_CHK( mbedtls_mpi_add_abs( X, A, B ) );
  835. X->s = s;
  836. }
  837. cleanup:
  838. return( ret );
  839. }
  840. /*
  841. * Signed addition: X = A + b
  842. */
  843. int mbedtls_mpi_add_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  844. {
  845. mbedtls_mpi _B;
  846. mbedtls_mpi_uint p[1];
  847. p[0] = ( b < 0 ) ? -b : b;
  848. _B.s = ( b < 0 ) ? -1 : 1;
  849. _B.n = 1;
  850. _B.p = p;
  851. return( mbedtls_mpi_add_mpi( X, A, &_B ) );
  852. }
  853. /*
  854. * Signed subtraction: X = A - b
  855. */
  856. int mbedtls_mpi_sub_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  857. {
  858. mbedtls_mpi _B;
  859. mbedtls_mpi_uint p[1];
  860. p[0] = ( b < 0 ) ? -b : b;
  861. _B.s = ( b < 0 ) ? -1 : 1;
  862. _B.n = 1;
  863. _B.p = p;
  864. return( mbedtls_mpi_sub_mpi( X, A, &_B ) );
  865. }
  866. /*
  867. * Helper for mbedtls_mpi multiplication
  868. */
  869. static
  870. #if defined(__APPLE__) && defined(__arm__)
  871. /*
  872. * Apple LLVM version 4.2 (clang-425.0.24) (based on LLVM 3.2svn)
  873. * appears to need this to prevent bad ARM code generation at -O3.
  874. */
  875. __attribute__ ((noinline))
  876. #endif
  877. void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
  878. {
  879. mbedtls_mpi_uint c = 0, t = 0;
  880. #if defined(MULADDC_HUIT)
  881. for( ; i >= 8; i -= 8 )
  882. {
  883. MULADDC_INIT
  884. MULADDC_HUIT
  885. MULADDC_STOP
  886. }
  887. for( ; i > 0; i-- )
  888. {
  889. MULADDC_INIT
  890. MULADDC_CORE
  891. MULADDC_STOP
  892. }
  893. #else /* MULADDC_HUIT */
  894. for( ; i >= 16; i -= 16 )
  895. {
  896. MULADDC_INIT
  897. MULADDC_CORE MULADDC_CORE
  898. MULADDC_CORE MULADDC_CORE
  899. MULADDC_CORE MULADDC_CORE
  900. MULADDC_CORE MULADDC_CORE
  901. MULADDC_CORE MULADDC_CORE
  902. MULADDC_CORE MULADDC_CORE
  903. MULADDC_CORE MULADDC_CORE
  904. MULADDC_CORE MULADDC_CORE
  905. MULADDC_STOP
  906. }
  907. for( ; i >= 8; i -= 8 )
  908. {
  909. MULADDC_INIT
  910. MULADDC_CORE MULADDC_CORE
  911. MULADDC_CORE MULADDC_CORE
  912. MULADDC_CORE MULADDC_CORE
  913. MULADDC_CORE MULADDC_CORE
  914. MULADDC_STOP
  915. }
  916. for( ; i > 0; i-- )
  917. {
  918. MULADDC_INIT
  919. MULADDC_CORE
  920. MULADDC_STOP
  921. }
  922. #endif /* MULADDC_HUIT */
  923. t++;
  924. do {
  925. *d += c; c = ( *d < c ); d++;
  926. }
  927. while( c != 0 );
  928. }
  929. /*
  930. * Baseline multiplication: X = A * B (HAC 14.12)
  931. */
  932. int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
  933. {
  934. int ret;
  935. size_t i, j;
  936. mbedtls_mpi TA, TB;
  937. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  938. if( X == A ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) ); A = &TA; }
  939. if( X == B ) { MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) ); B = &TB; }
  940. for( i = A->n; i > 0; i-- )
  941. if( A->p[i - 1] != 0 )
  942. break;
  943. for( j = B->n; j > 0; j-- )
  944. if( B->p[j - 1] != 0 )
  945. break;
  946. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, i + j ) );
  947. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
  948. for( i++; j > 0; j-- )
  949. mpi_mul_hlp( i - 1, A->p, X->p + j - 1, B->p[j - 1] );
  950. X->s = A->s * B->s;
  951. cleanup:
  952. mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
  953. return( ret );
  954. }
  955. /*
  956. * Baseline multiplication: X = A * b
  957. */
  958. int mbedtls_mpi_mul_int( mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b )
  959. {
  960. mbedtls_mpi _B;
  961. mbedtls_mpi_uint p[1];
  962. _B.s = 1;
  963. _B.n = 1;
  964. _B.p = p;
  965. p[0] = b;
  966. return( mbedtls_mpi_mul_mpi( X, A, &_B ) );
  967. }
  968. /*
  969. * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
  970. * mbedtls_mpi_uint divisor, d
  971. */
  972. static mbedtls_mpi_uint mbedtls_int_div_int( mbedtls_mpi_uint u1,
  973. mbedtls_mpi_uint u0, mbedtls_mpi_uint d, mbedtls_mpi_uint *r )
  974. {
  975. #if defined(MBEDTLS_HAVE_UDBL)
  976. mbedtls_t_udbl dividend, quotient;
  977. #else
  978. const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
  979. const mbedtls_mpi_uint uint_halfword_mask = ( (mbedtls_mpi_uint) 1 << biH ) - 1;
  980. mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
  981. mbedtls_mpi_uint u0_msw, u0_lsw;
  982. size_t s;
  983. #endif
  984. /*
  985. * Check for overflow
  986. */
  987. if( 0 == d || u1 >= d )
  988. {
  989. if (r != NULL) *r = ~0;
  990. return ( ~0 );
  991. }
  992. #if defined(MBEDTLS_HAVE_UDBL)
  993. dividend = (mbedtls_t_udbl) u1 << biL;
  994. dividend |= (mbedtls_t_udbl) u0;
  995. quotient = dividend / d;
  996. if( quotient > ( (mbedtls_t_udbl) 1 << biL ) - 1 )
  997. quotient = ( (mbedtls_t_udbl) 1 << biL ) - 1;
  998. if( r != NULL )
  999. *r = (mbedtls_mpi_uint)( dividend - (quotient * d ) );
  1000. return (mbedtls_mpi_uint) quotient;
  1001. #else
  1002. /*
  1003. * Algorithm D, Section 4.3.1 - The Art of Computer Programming
  1004. * Vol. 2 - Seminumerical Algorithms, Knuth
  1005. */
  1006. /*
  1007. * Normalize the divisor, d, and dividend, u0, u1
  1008. */
  1009. s = mbedtls_clz( d );
  1010. d = d << s;
  1011. u1 = u1 << s;
  1012. u1 |= ( u0 >> ( biL - s ) ) & ( -(mbedtls_mpi_sint)s >> ( biL - 1 ) );
  1013. u0 = u0 << s;
  1014. d1 = d >> biH;
  1015. d0 = d & uint_halfword_mask;
  1016. u0_msw = u0 >> biH;
  1017. u0_lsw = u0 & uint_halfword_mask;
  1018. /*
  1019. * Find the first quotient and remainder
  1020. */
  1021. q1 = u1 / d1;
  1022. r0 = u1 - d1 * q1;
  1023. while( q1 >= radix || ( q1 * d0 > radix * r0 + u0_msw ) )
  1024. {
  1025. q1 -= 1;
  1026. r0 += d1;
  1027. if ( r0 >= radix ) break;
  1028. }
  1029. rAX = ( u1 * radix ) + ( u0_msw - q1 * d );
  1030. q0 = rAX / d1;
  1031. r0 = rAX - q0 * d1;
  1032. while( q0 >= radix || ( q0 * d0 > radix * r0 + u0_lsw ) )
  1033. {
  1034. q0 -= 1;
  1035. r0 += d1;
  1036. if ( r0 >= radix ) break;
  1037. }
  1038. if (r != NULL)
  1039. *r = ( rAX * radix + u0_lsw - q0 * d ) >> s;
  1040. quotient = q1 * radix + q0;
  1041. return quotient;
  1042. #endif
  1043. }
  1044. /*
  1045. * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
  1046. */
  1047. int mbedtls_mpi_div_mpi( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1048. {
  1049. int ret;
  1050. size_t i, n, t, k;
  1051. mbedtls_mpi X, Y, Z, T1, T2;
  1052. if( mbedtls_mpi_cmp_int( B, 0 ) == 0 )
  1053. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1054. mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );
  1055. mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 );
  1056. if( mbedtls_mpi_cmp_abs( A, B ) < 0 )
  1057. {
  1058. if( Q != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_lset( Q, 0 ) );
  1059. if( R != NULL ) MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, A ) );
  1060. return( 0 );
  1061. }
  1062. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &X, A ) );
  1063. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, B ) );
  1064. X.s = Y.s = 1;
  1065. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &Z, A->n + 2 ) );
  1066. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Z, 0 ) );
  1067. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T1, 2 ) );
  1068. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T2, 3 ) );
  1069. k = mbedtls_mpi_bitlen( &Y ) % biL;
  1070. if( k < biL - 1 )
  1071. {
  1072. k = biL - 1 - k;
  1073. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &X, k ) );
  1074. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, k ) );
  1075. }
  1076. else k = 0;
  1077. n = X.n - 1;
  1078. t = Y.n - 1;
  1079. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &Y, biL * ( n - t ) ) );
  1080. while( mbedtls_mpi_cmp_mpi( &X, &Y ) >= 0 )
  1081. {
  1082. Z.p[n - t]++;
  1083. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &Y ) );
  1084. }
  1085. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, biL * ( n - t ) ) );
  1086. for( i = n; i > t ; i-- )
  1087. {
  1088. if( X.p[i] >= Y.p[t] )
  1089. Z.p[i - t - 1] = ~0;
  1090. else
  1091. {
  1092. Z.p[i - t - 1] = mbedtls_int_div_int( X.p[i], X.p[i - 1],
  1093. Y.p[t], NULL);
  1094. }
  1095. Z.p[i - t - 1]++;
  1096. do
  1097. {
  1098. Z.p[i - t - 1]--;
  1099. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T1, 0 ) );
  1100. T1.p[0] = ( t < 1 ) ? 0 : Y.p[t - 1];
  1101. T1.p[1] = Y.p[t];
  1102. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &T1, Z.p[i - t - 1] ) );
  1103. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &T2, 0 ) );
  1104. T2.p[0] = ( i < 2 ) ? 0 : X.p[i - 2];
  1105. T2.p[1] = ( i < 1 ) ? 0 : X.p[i - 1];
  1106. T2.p[2] = X.p[i];
  1107. }
  1108. while( mbedtls_mpi_cmp_mpi( &T1, &T2 ) > 0 );
  1109. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1, &Y, Z.p[i - t - 1] ) );
  1110. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1111. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X, &X, &T1 ) );
  1112. if( mbedtls_mpi_cmp_int( &X, 0 ) < 0 )
  1113. {
  1114. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &T1, &Y ) );
  1115. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T1, biL * ( i - t - 1 ) ) );
  1116. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &X, &X, &T1 ) );
  1117. Z.p[i - t - 1]--;
  1118. }
  1119. }
  1120. if( Q != NULL )
  1121. {
  1122. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( Q, &Z ) );
  1123. Q->s = A->s * B->s;
  1124. }
  1125. if( R != NULL )
  1126. {
  1127. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &X, k ) );
  1128. X.s = A->s;
  1129. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( R, &X ) );
  1130. if( mbedtls_mpi_cmp_int( R, 0 ) == 0 )
  1131. R->s = 1;
  1132. }
  1133. cleanup:
  1134. mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );
  1135. mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 );
  1136. return( ret );
  1137. }
  1138. /*
  1139. * Division by int: A = Q * b + R
  1140. */
  1141. int mbedtls_mpi_div_int( mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1142. {
  1143. mbedtls_mpi _B;
  1144. mbedtls_mpi_uint p[1];
  1145. p[0] = ( b < 0 ) ? -b : b;
  1146. _B.s = ( b < 0 ) ? -1 : 1;
  1147. _B.n = 1;
  1148. _B.p = p;
  1149. return( mbedtls_mpi_div_mpi( Q, R, A, &_B ) );
  1150. }
  1151. /*
  1152. * Modulo: R = A mod B
  1153. */
  1154. int mbedtls_mpi_mod_mpi( mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1155. {
  1156. int ret;
  1157. if( mbedtls_mpi_cmp_int( B, 0 ) < 0 )
  1158. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1159. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( NULL, R, A, B ) );
  1160. while( mbedtls_mpi_cmp_int( R, 0 ) < 0 )
  1161. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( R, R, B ) );
  1162. while( mbedtls_mpi_cmp_mpi( R, B ) >= 0 )
  1163. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( R, R, B ) );
  1164. cleanup:
  1165. return( ret );
  1166. }
  1167. /*
  1168. * Modulo: r = A mod b
  1169. */
  1170. int mbedtls_mpi_mod_int( mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b )
  1171. {
  1172. size_t i;
  1173. mbedtls_mpi_uint x, y, z;
  1174. if( b == 0 )
  1175. return( MBEDTLS_ERR_MPI_DIVISION_BY_ZERO );
  1176. if( b < 0 )
  1177. return( MBEDTLS_ERR_MPI_NEGATIVE_VALUE );
  1178. /*
  1179. * handle trivial cases
  1180. */
  1181. if( b == 1 )
  1182. {
  1183. *r = 0;
  1184. return( 0 );
  1185. }
  1186. if( b == 2 )
  1187. {
  1188. *r = A->p[0] & 1;
  1189. return( 0 );
  1190. }
  1191. /*
  1192. * general case
  1193. */
  1194. for( i = A->n, y = 0; i > 0; i-- )
  1195. {
  1196. x = A->p[i - 1];
  1197. y = ( y << biH ) | ( x >> biH );
  1198. z = y / b;
  1199. y -= z * b;
  1200. x <<= biH;
  1201. y = ( y << biH ) | ( x >> biH );
  1202. z = y / b;
  1203. y -= z * b;
  1204. }
  1205. /*
  1206. * If A is negative, then the current y represents a negative value.
  1207. * Flipping it to the positive side.
  1208. */
  1209. if( A->s < 0 && y != 0 )
  1210. y = b - y;
  1211. *r = y;
  1212. return( 0 );
  1213. }
  1214. /*
  1215. * Fast Montgomery initialization (thanks to Tom St Denis)
  1216. */
  1217. static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
  1218. {
  1219. mbedtls_mpi_uint x, m0 = N->p[0];
  1220. unsigned int i;
  1221. x = m0;
  1222. x += ( ( m0 + 2 ) & 4 ) << 1;
  1223. for( i = biL; i >= 8; i /= 2 )
  1224. x *= ( 2 - ( m0 * x ) );
  1225. *mm = ~x + 1;
  1226. }
  1227. /*
  1228. * Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
  1229. */
  1230. static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
  1231. const mbedtls_mpi *T )
  1232. {
  1233. size_t i, n, m;
  1234. mbedtls_mpi_uint u0, u1, *d;
  1235. if( T->n < N->n + 1 || T->p == NULL )
  1236. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1237. memset( T->p, 0, T->n * ciL );
  1238. d = T->p;
  1239. n = N->n;
  1240. m = ( B->n < n ) ? B->n : n;
  1241. for( i = 0; i < n; i++ )
  1242. {
  1243. /*
  1244. * T = (T + u0*B + u1*N) / 2^biL
  1245. */
  1246. u0 = A->p[i];
  1247. u1 = ( d[0] + u0 * B->p[0] ) * mm;
  1248. mpi_mul_hlp( m, B->p, d, u0 );
  1249. mpi_mul_hlp( n, N->p, d, u1 );
  1250. *d++ = u0; d[n + 1] = 0;
  1251. }
  1252. memcpy( A->p, d, ( n + 1 ) * ciL );
  1253. if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
  1254. mpi_sub_hlp( n, N->p, A->p );
  1255. else
  1256. /* prevent timing attacks */
  1257. mpi_sub_hlp( n, A->p, T->p );
  1258. return( 0 );
  1259. }
  1260. /*
  1261. * Montgomery reduction: A = A * R^-1 mod N
  1262. */
  1263. static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T )
  1264. {
  1265. mbedtls_mpi_uint z = 1;
  1266. mbedtls_mpi U;
  1267. U.n = U.s = (int) z;
  1268. U.p = &z;
  1269. return( mpi_montmul( A, &U, N, mm, T ) );
  1270. }
  1271. /*
  1272. * Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
  1273. */
  1274. int mbedtls_mpi_exp_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *E, const mbedtls_mpi *N, mbedtls_mpi *_RR )
  1275. {
  1276. int ret;
  1277. size_t wbits, wsize, one = 1;
  1278. size_t i, j, nblimbs;
  1279. size_t bufsize, nbits;
  1280. mbedtls_mpi_uint ei, mm, state;
  1281. mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;
  1282. int neg;
  1283. if( mbedtls_mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
  1284. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1285. if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
  1286. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1287. /*
  1288. * Init temps and window size
  1289. */
  1290. mpi_montg_init( &mm, N );
  1291. mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
  1292. mbedtls_mpi_init( &Apos );
  1293. memset( W, 0, sizeof( W ) );
  1294. i = mbedtls_mpi_bitlen( E );
  1295. wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
  1296. ( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
  1297. if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
  1298. wsize = MBEDTLS_MPI_WINDOW_SIZE;
  1299. j = N->n + 1;
  1300. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
  1301. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
  1302. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
  1303. /*
  1304. * Compensate for negative A (and correct at the end)
  1305. */
  1306. neg = ( A->s == -1 );
  1307. if( neg )
  1308. {
  1309. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
  1310. Apos.s = 1;
  1311. A = &Apos;
  1312. }
  1313. /*
  1314. * If 1st call, pre-compute R^2 mod N
  1315. */
  1316. if( _RR == NULL || _RR->p == NULL )
  1317. {
  1318. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
  1319. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
  1320. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
  1321. if( _RR != NULL )
  1322. memcpy( _RR, &RR, sizeof( mbedtls_mpi ) );
  1323. }
  1324. else
  1325. memcpy( &RR, _RR, sizeof( mbedtls_mpi ) );
  1326. /*
  1327. * W[1] = A * R^2 * R^-1 mod N = A * R mod N
  1328. */
  1329. if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
  1330. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
  1331. else
  1332. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
  1333. MBEDTLS_MPI_CHK( mpi_montmul( &W[1], &RR, N, mm, &T ) );
  1334. /*
  1335. * X = R^2 * R^-1 mod N = R mod N
  1336. */
  1337. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
  1338. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1339. if( wsize > 1 )
  1340. {
  1341. /*
  1342. * W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
  1343. */
  1344. j = one << ( wsize - 1 );
  1345. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
  1346. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
  1347. for( i = 0; i < wsize - 1; i++ )
  1348. MBEDTLS_MPI_CHK( mpi_montmul( &W[j], &W[j], N, mm, &T ) );
  1349. /*
  1350. * W[i] = W[i - 1] * W[1]
  1351. */
  1352. for( i = j + 1; i < ( one << wsize ); i++ )
  1353. {
  1354. MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
  1355. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
  1356. MBEDTLS_MPI_CHK( mpi_montmul( &W[i], &W[1], N, mm, &T ) );
  1357. }
  1358. }
  1359. nblimbs = E->n;
  1360. bufsize = 0;
  1361. nbits = 0;
  1362. wbits = 0;
  1363. state = 0;
  1364. while( 1 )
  1365. {
  1366. if( bufsize == 0 )
  1367. {
  1368. if( nblimbs == 0 )
  1369. break;
  1370. nblimbs--;
  1371. bufsize = sizeof( mbedtls_mpi_uint ) << 3;
  1372. }
  1373. bufsize--;
  1374. ei = (E->p[nblimbs] >> bufsize) & 1;
  1375. /*
  1376. * skip leading 0s
  1377. */
  1378. if( ei == 0 && state == 0 )
  1379. continue;
  1380. if( ei == 0 && state == 1 )
  1381. {
  1382. /*
  1383. * out of window, square X
  1384. */
  1385. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1386. continue;
  1387. }
  1388. /*
  1389. * add ei to current window
  1390. */
  1391. state = 2;
  1392. nbits++;
  1393. wbits |= ( ei << ( wsize - nbits ) );
  1394. if( nbits == wsize )
  1395. {
  1396. /*
  1397. * X = X^wsize R^-1 mod N
  1398. */
  1399. for( i = 0; i < wsize; i++ )
  1400. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1401. /*
  1402. * X = X * W[wbits] R^-1 mod N
  1403. */
  1404. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[wbits], N, mm, &T ) );
  1405. state--;
  1406. nbits = 0;
  1407. wbits = 0;
  1408. }
  1409. }
  1410. /*
  1411. * process the remaining bits
  1412. */
  1413. for( i = 0; i < nbits; i++ )
  1414. {
  1415. MBEDTLS_MPI_CHK( mpi_montmul( X, X, N, mm, &T ) );
  1416. wbits <<= 1;
  1417. if( ( wbits & ( one << wsize ) ) != 0 )
  1418. MBEDTLS_MPI_CHK( mpi_montmul( X, &W[1], N, mm, &T ) );
  1419. }
  1420. /*
  1421. * X = A^E * R * R^-1 mod N = A^E mod N
  1422. */
  1423. MBEDTLS_MPI_CHK( mpi_montred( X, N, mm, &T ) );
  1424. if( neg )
  1425. {
  1426. X->s = -1;
  1427. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
  1428. }
  1429. cleanup:
  1430. for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
  1431. mbedtls_mpi_free( &W[i] );
  1432. mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
  1433. if( _RR == NULL || _RR->p == NULL )
  1434. mbedtls_mpi_free( &RR );
  1435. return( ret );
  1436. }
  1437. /*
  1438. * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
  1439. */
  1440. int mbedtls_mpi_gcd( mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B )
  1441. {
  1442. int ret;
  1443. size_t lz, lzt;
  1444. mbedtls_mpi TG, TA, TB;
  1445. mbedtls_mpi_init( &TG ); mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
  1446. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
  1447. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
  1448. lz = mbedtls_mpi_lsb( &TA );
  1449. lzt = mbedtls_mpi_lsb( &TB );
  1450. if( lzt < lz )
  1451. lz = lzt;
  1452. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, lz ) );
  1453. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, lz ) );
  1454. TA.s = TB.s = 1;
  1455. while( mbedtls_mpi_cmp_int( &TA, 0 ) != 0 )
  1456. {
  1457. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, mbedtls_mpi_lsb( &TA ) ) );
  1458. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, mbedtls_mpi_lsb( &TB ) ) );
  1459. if( mbedtls_mpi_cmp_mpi( &TA, &TB ) >= 0 )
  1460. {
  1461. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TA, &TA, &TB ) );
  1462. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TA, 1 ) );
  1463. }
  1464. else
  1465. {
  1466. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &TB, &TB, &TA ) );
  1467. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TB, 1 ) );
  1468. }
  1469. }
  1470. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &TB, lz ) );
  1471. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( G, &TB ) );
  1472. cleanup:
  1473. mbedtls_mpi_free( &TG ); mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TB );
  1474. return( ret );
  1475. }
  1476. /*
  1477. * Fill X with size bytes of random.
  1478. *
  1479. * Use a temporary bytes representation to make sure the result is the same
  1480. * regardless of the platform endianness (useful when f_rng is actually
  1481. * deterministic, eg for tests).
  1482. */
  1483. int mbedtls_mpi_fill_random( mbedtls_mpi *X, size_t size,
  1484. int (*f_rng)(void *, unsigned char *, size_t),
  1485. void *p_rng )
  1486. {
  1487. int ret;
  1488. unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
  1489. if( size > MBEDTLS_MPI_MAX_SIZE )
  1490. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1491. MBEDTLS_MPI_CHK( f_rng( p_rng, buf, size ) );
  1492. MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( X, buf, size ) );
  1493. cleanup:
  1494. return( ret );
  1495. }
  1496. /*
  1497. * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
  1498. */
  1499. int mbedtls_mpi_inv_mod( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N )
  1500. {
  1501. int ret;
  1502. mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
  1503. if( mbedtls_mpi_cmp_int( N, 0 ) <= 0 )
  1504. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1505. mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TU ); mbedtls_mpi_init( &U1 ); mbedtls_mpi_init( &U2 );
  1506. mbedtls_mpi_init( &G ); mbedtls_mpi_init( &TB ); mbedtls_mpi_init( &TV );
  1507. mbedtls_mpi_init( &V1 ); mbedtls_mpi_init( &V2 );
  1508. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, A, N ) );
  1509. if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
  1510. {
  1511. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1512. goto cleanup;
  1513. }
  1514. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &TA, A, N ) );
  1515. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TU, &TA ) );
  1516. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, N ) );
  1517. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TV, N ) );
  1518. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U1, 1 ) );
  1519. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &U2, 0 ) );
  1520. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V1, 0 ) );
  1521. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &V2, 1 ) );
  1522. do
  1523. {
  1524. while( ( TU.p[0] & 1 ) == 0 )
  1525. {
  1526. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TU, 1 ) );
  1527. if( ( U1.p[0] & 1 ) != 0 || ( U2.p[0] & 1 ) != 0 )
  1528. {
  1529. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &U1, &U1, &TB ) );
  1530. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &TA ) );
  1531. }
  1532. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U1, 1 ) );
  1533. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &U2, 1 ) );
  1534. }
  1535. while( ( TV.p[0] & 1 ) == 0 )
  1536. {
  1537. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &TV, 1 ) );
  1538. if( ( V1.p[0] & 1 ) != 0 || ( V2.p[0] & 1 ) != 0 )
  1539. {
  1540. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, &TB ) );
  1541. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &TA ) );
  1542. }
  1543. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V1, 1 ) );
  1544. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &V2, 1 ) );
  1545. }
  1546. if( mbedtls_mpi_cmp_mpi( &TU, &TV ) >= 0 )
  1547. {
  1548. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TU, &TU, &TV ) );
  1549. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U1, &U1, &V1 ) );
  1550. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U2, &U2, &V2 ) );
  1551. }
  1552. else
  1553. {
  1554. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &TV, &TV, &TU ) );
  1555. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, &U1 ) );
  1556. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V2, &V2, &U2 ) );
  1557. }
  1558. }
  1559. while( mbedtls_mpi_cmp_int( &TU, 0 ) != 0 );
  1560. while( mbedtls_mpi_cmp_int( &V1, 0 ) < 0 )
  1561. MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &V1, &V1, N ) );
  1562. while( mbedtls_mpi_cmp_mpi( &V1, N ) >= 0 )
  1563. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &V1, &V1, N ) );
  1564. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &V1 ) );
  1565. cleanup:
  1566. mbedtls_mpi_free( &TA ); mbedtls_mpi_free( &TU ); mbedtls_mpi_free( &U1 ); mbedtls_mpi_free( &U2 );
  1567. mbedtls_mpi_free( &G ); mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TV );
  1568. mbedtls_mpi_free( &V1 ); mbedtls_mpi_free( &V2 );
  1569. return( ret );
  1570. }
  1571. #if defined(MBEDTLS_GENPRIME)
  1572. static const int small_prime[] =
  1573. {
  1574. 3, 5, 7, 11, 13, 17, 19, 23,
  1575. 29, 31, 37, 41, 43, 47, 53, 59,
  1576. 61, 67, 71, 73, 79, 83, 89, 97,
  1577. 101, 103, 107, 109, 113, 127, 131, 137,
  1578. 139, 149, 151, 157, 163, 167, 173, 179,
  1579. 181, 191, 193, 197, 199, 211, 223, 227,
  1580. 229, 233, 239, 241, 251, 257, 263, 269,
  1581. 271, 277, 281, 283, 293, 307, 311, 313,
  1582. 317, 331, 337, 347, 349, 353, 359, 367,
  1583. 373, 379, 383, 389, 397, 401, 409, 419,
  1584. 421, 431, 433, 439, 443, 449, 457, 461,
  1585. 463, 467, 479, 487, 491, 499, 503, 509,
  1586. 521, 523, 541, 547, 557, 563, 569, 571,
  1587. 577, 587, 593, 599, 601, 607, 613, 617,
  1588. 619, 631, 641, 643, 647, 653, 659, 661,
  1589. 673, 677, 683, 691, 701, 709, 719, 727,
  1590. 733, 739, 743, 751, 757, 761, 769, 773,
  1591. 787, 797, 809, 811, 821, 823, 827, 829,
  1592. 839, 853, 857, 859, 863, 877, 881, 883,
  1593. 887, 907, 911, 919, 929, 937, 941, 947,
  1594. 953, 967, 971, 977, 983, 991, 997, -103
  1595. };
  1596. /*
  1597. * Small divisors test (X must be positive)
  1598. *
  1599. * Return values:
  1600. * 0: no small factor (possible prime, more tests needed)
  1601. * 1: certain prime
  1602. * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
  1603. * other negative: error
  1604. */
  1605. static int mpi_check_small_factors( const mbedtls_mpi *X )
  1606. {
  1607. int ret = 0;
  1608. size_t i;
  1609. mbedtls_mpi_uint r;
  1610. if( ( X->p[0] & 1 ) == 0 )
  1611. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1612. for( i = 0; small_prime[i] > 0; i++ )
  1613. {
  1614. if( mbedtls_mpi_cmp_int( X, small_prime[i] ) <= 0 )
  1615. return( 1 );
  1616. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, small_prime[i] ) );
  1617. if( r == 0 )
  1618. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1619. }
  1620. cleanup:
  1621. return( ret );
  1622. }
  1623. /*
  1624. * Miller-Rabin pseudo-primality test (HAC 4.24)
  1625. */
  1626. static int mpi_miller_rabin( const mbedtls_mpi *X,
  1627. int (*f_rng)(void *, unsigned char *, size_t),
  1628. void *p_rng )
  1629. {
  1630. int ret, count;
  1631. size_t i, j, k, n, s;
  1632. mbedtls_mpi W, R, T, A, RR;
  1633. mbedtls_mpi_init( &W ); mbedtls_mpi_init( &R ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &A );
  1634. mbedtls_mpi_init( &RR );
  1635. /*
  1636. * W = |X| - 1
  1637. * R = W >> lsb( W )
  1638. */
  1639. MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &W, X, 1 ) );
  1640. s = mbedtls_mpi_lsb( &W );
  1641. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R, &W ) );
  1642. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &R, s ) );
  1643. i = mbedtls_mpi_bitlen( X );
  1644. /*
  1645. * HAC, table 4.4
  1646. */
  1647. n = ( ( i >= 1300 ) ? 2 : ( i >= 850 ) ? 3 :
  1648. ( i >= 650 ) ? 4 : ( i >= 350 ) ? 8 :
  1649. ( i >= 250 ) ? 12 : ( i >= 150 ) ? 18 : 27 );
  1650. for( i = 0; i < n; i++ )
  1651. {
  1652. /*
  1653. * pick a random A, 1 < A < |X| - 1
  1654. */
  1655. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1656. if( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 )
  1657. {
  1658. j = mbedtls_mpi_bitlen( &A ) - mbedtls_mpi_bitlen( &W );
  1659. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j + 1 ) );
  1660. }
  1661. A.p[0] |= 3;
  1662. count = 0;
  1663. do {
  1664. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &A, X->n * ciL, f_rng, p_rng ) );
  1665. j = mbedtls_mpi_bitlen( &A );
  1666. k = mbedtls_mpi_bitlen( &W );
  1667. if (j > k) {
  1668. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &A, j - k ) );
  1669. }
  1670. if (count++ > 30) {
  1671. return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1672. }
  1673. } while ( mbedtls_mpi_cmp_mpi( &A, &W ) >= 0 ||
  1674. mbedtls_mpi_cmp_int( &A, 1 ) <= 0 );
  1675. /*
  1676. * A = A^R mod |X|
  1677. */
  1678. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &A, &A, &R, X, &RR ) );
  1679. if( mbedtls_mpi_cmp_mpi( &A, &W ) == 0 ||
  1680. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1681. continue;
  1682. j = 1;
  1683. while( j < s && mbedtls_mpi_cmp_mpi( &A, &W ) != 0 )
  1684. {
  1685. /*
  1686. * A = A * A mod |X|
  1687. */
  1688. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &A, &A ) );
  1689. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &A, &T, X ) );
  1690. if( mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1691. break;
  1692. j++;
  1693. }
  1694. /*
  1695. * not prime if A != |X| - 1 or A == 1
  1696. */
  1697. if( mbedtls_mpi_cmp_mpi( &A, &W ) != 0 ||
  1698. mbedtls_mpi_cmp_int( &A, 1 ) == 0 )
  1699. {
  1700. ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
  1701. break;
  1702. }
  1703. }
  1704. cleanup:
  1705. mbedtls_mpi_free( &W ); mbedtls_mpi_free( &R ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &A );
  1706. mbedtls_mpi_free( &RR );
  1707. return( ret );
  1708. }
  1709. /*
  1710. * Pseudo-primality test: small factors, then Miller-Rabin
  1711. */
  1712. int mbedtls_mpi_is_prime( const mbedtls_mpi *X,
  1713. int (*f_rng)(void *, unsigned char *, size_t),
  1714. void *p_rng )
  1715. {
  1716. int ret;
  1717. mbedtls_mpi XX;
  1718. XX.s = 1;
  1719. XX.n = X->n;
  1720. XX.p = X->p;
  1721. if( mbedtls_mpi_cmp_int( &XX, 0 ) == 0 ||
  1722. mbedtls_mpi_cmp_int( &XX, 1 ) == 0 )
  1723. return( MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
  1724. if( mbedtls_mpi_cmp_int( &XX, 2 ) == 0 )
  1725. return( 0 );
  1726. if( ( ret = mpi_check_small_factors( &XX ) ) != 0 )
  1727. {
  1728. if( ret == 1 )
  1729. return( 0 );
  1730. return( ret );
  1731. }
  1732. return( mpi_miller_rabin( &XX, f_rng, p_rng ) );
  1733. }
  1734. /*
  1735. * Prime number generation
  1736. */
  1737. int mbedtls_mpi_gen_prime( mbedtls_mpi *X, size_t nbits, int dh_flag,
  1738. int (*f_rng)(void *, unsigned char *, size_t),
  1739. void *p_rng )
  1740. {
  1741. int ret;
  1742. size_t k, n;
  1743. mbedtls_mpi_uint r;
  1744. mbedtls_mpi Y;
  1745. if( nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS )
  1746. return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
  1747. mbedtls_mpi_init( &Y );
  1748. n = BITS_TO_LIMBS( nbits );
  1749. MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( X, n * ciL, f_rng, p_rng ) );
  1750. k = mbedtls_mpi_bitlen( X );
  1751. if( k > nbits ) MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( X, k - nbits + 1 ) );
  1752. mbedtls_mpi_set_bit( X, nbits-1, 1 );
  1753. X->p[0] |= 1;
  1754. if( dh_flag == 0 )
  1755. {
  1756. while( ( ret = mbedtls_mpi_is_prime( X, f_rng, p_rng ) ) != 0 )
  1757. {
  1758. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1759. goto cleanup;
  1760. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 2 ) );
  1761. }
  1762. }
  1763. else
  1764. {
  1765. /*
  1766. * An necessary condition for Y and X = 2Y + 1 to be prime
  1767. * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
  1768. * Make sure it is satisfied, while keeping X = 3 mod 4
  1769. */
  1770. X->p[0] |= 2;
  1771. MBEDTLS_MPI_CHK( mbedtls_mpi_mod_int( &r, X, 3 ) );
  1772. if( r == 0 )
  1773. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 8 ) );
  1774. else if( r == 1 )
  1775. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 4 ) );
  1776. /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
  1777. MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Y, X ) );
  1778. MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &Y, 1 ) );
  1779. while( 1 )
  1780. {
  1781. /*
  1782. * First, check small factors for X and Y
  1783. * before doing Miller-Rabin on any of them
  1784. */
  1785. if( ( ret = mpi_check_small_factors( X ) ) == 0 &&
  1786. ( ret = mpi_check_small_factors( &Y ) ) == 0 &&
  1787. ( ret = mpi_miller_rabin( X, f_rng, p_rng ) ) == 0 &&
  1788. ( ret = mpi_miller_rabin( &Y, f_rng, p_rng ) ) == 0 )
  1789. {
  1790. break;
  1791. }
  1792. if( ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
  1793. goto cleanup;
  1794. /*
  1795. * Next candidates. We want to preserve Y = (X-1) / 2 and
  1796. * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
  1797. * so up Y by 6 and X by 12.
  1798. */
  1799. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( X, X, 12 ) );
  1800. MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &Y, &Y, 6 ) );
  1801. }
  1802. }
  1803. cleanup:
  1804. mbedtls_mpi_free( &Y );
  1805. return( ret );
  1806. }
  1807. #endif /* MBEDTLS_GENPRIME */
  1808. #if defined(MBEDTLS_SELF_TEST)
  1809. #define GCD_PAIR_COUNT 3
  1810. static const int gcd_pairs[GCD_PAIR_COUNT][3] =
  1811. {
  1812. { 693, 609, 21 },
  1813. { 1764, 868, 28 },
  1814. { 768454923, 542167814, 1 }
  1815. };
  1816. /*
  1817. * Checkup routine
  1818. */
  1819. int mbedtls_mpi_self_test( int verbose )
  1820. {
  1821. int ret, i;
  1822. mbedtls_mpi A, E, N, X, Y, U, V;
  1823. mbedtls_mpi_init( &A ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &N ); mbedtls_mpi_init( &X );
  1824. mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &U ); mbedtls_mpi_init( &V );
  1825. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &A, 16,
  1826. "EFE021C2645FD1DC586E69184AF4A31E" \
  1827. "D5F53E93B5F123FA41680867BA110131" \
  1828. "944FE7952E2517337780CB0DB80E61AA" \
  1829. "E7C8DDC6C5C6AADEB34EB38A2F40D5E6" ) );
  1830. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &E, 16,
  1831. "B2E7EFD37075B9F03FF989C7C5051C20" \
  1832. "34D2A323810251127E7BF8625A4F49A5" \
  1833. "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
  1834. "5B5C25763222FEFCCFC38B832366C29E" ) );
  1835. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &N, 16,
  1836. "0066A198186C18C10B2F5ED9B522752A" \
  1837. "9830B69916E535C8F047518A889A43A5" \
  1838. "94B6BED27A168D31D4A52F88925AA8F5" ) );
  1839. MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X, &A, &N ) );
  1840. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1841. "602AB7ECA597A3D6B56FF9829A5E8B85" \
  1842. "9E857EA95A03512E2BAE7391688D264A" \
  1843. "A5663B0341DB9CCFD2C4C5F421FEC814" \
  1844. "8001B72E848A38CAE1C65F78E56ABDEF" \
  1845. "E12D3C039B8A02D6BE593F0BBBDA56F1" \
  1846. "ECF677152EF804370C1A305CAF3B5BF1" \
  1847. "30879B56C61DE584A0F53A2447A51E" ) );
  1848. if( verbose != 0 )
  1849. mbedtls_printf( " MPI test #1 (mul_mpi): " );
  1850. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1851. {
  1852. if( verbose != 0 )
  1853. mbedtls_printf( "failed\n" );
  1854. ret = 1;
  1855. goto cleanup;
  1856. }
  1857. if( verbose != 0 )
  1858. mbedtls_printf( "passed\n" );
  1859. MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &X, &Y, &A, &N ) );
  1860. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1861. "256567336059E52CAE22925474705F39A94" ) );
  1862. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &V, 16,
  1863. "6613F26162223DF488E9CD48CC132C7A" \
  1864. "0AC93C701B001B092E4E5B9F73BCD27B" \
  1865. "9EE50D0657C77F374E903CDFA4C642" ) );
  1866. if( verbose != 0 )
  1867. mbedtls_printf( " MPI test #2 (div_mpi): " );
  1868. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 ||
  1869. mbedtls_mpi_cmp_mpi( &Y, &V ) != 0 )
  1870. {
  1871. if( verbose != 0 )
  1872. mbedtls_printf( "failed\n" );
  1873. ret = 1;
  1874. goto cleanup;
  1875. }
  1876. if( verbose != 0 )
  1877. mbedtls_printf( "passed\n" );
  1878. MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &X, &A, &E, &N, NULL ) );
  1879. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1880. "36E139AEA55215609D2816998ED020BB" \
  1881. "BD96C37890F65171D948E9BC7CBAA4D9" \
  1882. "325D24D6A3C12710F10A09FA08AB87" ) );
  1883. if( verbose != 0 )
  1884. mbedtls_printf( " MPI test #3 (exp_mod): " );
  1885. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1886. {
  1887. if( verbose != 0 )
  1888. mbedtls_printf( "failed\n" );
  1889. ret = 1;
  1890. goto cleanup;
  1891. }
  1892. if( verbose != 0 )
  1893. mbedtls_printf( "passed\n" );
  1894. MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &X, &A, &N ) );
  1895. MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &U, 16,
  1896. "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
  1897. "C3DBA76456363A10869622EAC2DD84EC" \
  1898. "C5B8A74DAC4D09E03B5E0BE779F2DF61" ) );
  1899. if( verbose != 0 )
  1900. mbedtls_printf( " MPI test #4 (inv_mod): " );
  1901. if( mbedtls_mpi_cmp_mpi( &X, &U ) != 0 )
  1902. {
  1903. if( verbose != 0 )
  1904. mbedtls_printf( "failed\n" );
  1905. ret = 1;
  1906. goto cleanup;
  1907. }
  1908. if( verbose != 0 )
  1909. mbedtls_printf( "passed\n" );
  1910. if( verbose != 0 )
  1911. mbedtls_printf( " MPI test #5 (simple gcd): " );
  1912. for( i = 0; i < GCD_PAIR_COUNT; i++ )
  1913. {
  1914. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &X, gcd_pairs[i][0] ) );
  1915. MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &Y, gcd_pairs[i][1] ) );
  1916. MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &A, &X, &Y ) );
  1917. if( mbedtls_mpi_cmp_int( &A, gcd_pairs[i][2] ) != 0 )
  1918. {
  1919. if( verbose != 0 )
  1920. mbedtls_printf( "failed at %d\n", i );
  1921. ret = 1;
  1922. goto cleanup;
  1923. }
  1924. }
  1925. if( verbose != 0 )
  1926. mbedtls_printf( "passed\n" );
  1927. cleanup:
  1928. if( ret != 0 && verbose != 0 )
  1929. mbedtls_printf( "Unexpected error, return code = %08X\n", ret );
  1930. mbedtls_mpi_free( &A ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &N ); mbedtls_mpi_free( &X );
  1931. mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &U ); mbedtls_mpi_free( &V );
  1932. if( verbose != 0 )
  1933. mbedtls_printf( "\n" );
  1934. return( ret );
  1935. }
  1936. #endif /* MBEDTLS_SELF_TEST */
  1937. #endif /* MBEDTLS_BIGNUM_C */