| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197 | /* *  Elliptic curves over GF(p): generic functions * *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved *  SPDX-License-Identifier: Apache-2.0 * *  Licensed under the Apache License, Version 2.0 (the "License"); you may *  not use this file except in compliance with the License. *  You may obtain a copy of the License at * *  http://www.apache.org/licenses/LICENSE-2.0 * *  Unless required by applicable law or agreed to in writing, software *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *  See the License for the specific language governing permissions and *  limitations under the License. * *  This file is part of mbed TLS (https://tls.mbed.org) *//* * References: * * SEC1 http://www.secg.org/index.php?action=secg,docs_secg * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf * RFC 4492 for the related TLS structures and constants * * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf * * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis *     for elliptic curve cryptosystems. In : Cryptographic Hardware and *     Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. *     <http://link.springer.com/chapter/10.1007/3-540-48059-5_25> * * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to *     render ECC resistant against Side Channel Attacks. IACR Cryptology *     ePrint Archive, 2004, vol. 2004, p. 342. *     <http://eprint.iacr.org/2004/342.pdf> */#if !defined(MBEDTLS_CONFIG_FILE)#include "mbedtls/config.h"#else#include MBEDTLS_CONFIG_FILE#endif#if defined(MBEDTLS_ECP_C)#include "mbedtls/ecp.h"#include "mbedtls/threading.h"#include <string.h>#if !defined(MBEDTLS_ECP_ALT)#if defined(MBEDTLS_PLATFORM_C)#include "mbedtls/platform.h"#else#include <stdlib.h>#include <stdio.h>#define mbedtls_printf     printf#define mbedtls_calloc    calloc#define mbedtls_free       free#endif#include "mbedtls/ecp_internal.h"#if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \    !defined(inline) && !defined(__cplusplus)#define inline __inline#endif/* Implementation that should never be optimized out by the compiler */static void mbedtls_zeroize( void *v, size_t n ) {    volatile unsigned char *p = v; while( n-- ) *p++ = 0;}#if defined(MBEDTLS_SELF_TEST)/* * Counts of point addition and doubling, and field multiplications. * Used to test resistance of point multiplication to simple timing attacks. */static unsigned long add_count, dbl_count, mul_count;#endif#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) ||   \    defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) ||   \    defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) ||   \    defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) ||   \    defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) ||   \    defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)   ||   \    defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)   ||   \    defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)   ||   \    defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||   \    defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||   \    defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)#define ECP_SHORTWEIERSTRASS#endif#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)#define ECP_MONTGOMERY#endif/* * Curve types: internal for now, might be exposed later */typedef enum{    ECP_TYPE_NONE = 0,    ECP_TYPE_SHORT_WEIERSTRASS,    /* y^2 = x^3 + a x + b      */    ECP_TYPE_MONTGOMERY,           /* y^2 = x^3 + a x^2 + x    */} ecp_curve_type;/* * List of supported curves: *  - internal ID *  - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2) *  - size in bits *  - readable name * * Curves are listed in order: largest curves first, and for a given size, * fastest curves first. This provides the default order for the SSL module. * * Reminder: update profiles in x509_crt.c when adding a new curves! */static const mbedtls_ecp_curve_info ecp_supported_curves[] ={#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)    { MBEDTLS_ECP_DP_SECP521R1,    25,     521,    "secp521r1"         },#endif#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)    { MBEDTLS_ECP_DP_BP512R1,      28,     512,    "brainpoolP512r1"   },#endif#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)    { MBEDTLS_ECP_DP_SECP384R1,    24,     384,    "secp384r1"         },#endif#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)    { MBEDTLS_ECP_DP_BP384R1,      27,     384,    "brainpoolP384r1"   },#endif#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)    { MBEDTLS_ECP_DP_SECP256R1,    23,     256,    "secp256r1"         },#endif#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)    { MBEDTLS_ECP_DP_SECP256K1,    22,     256,    "secp256k1"         },#endif#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)    { MBEDTLS_ECP_DP_BP256R1,      26,     256,    "brainpoolP256r1"   },#endif#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)    { MBEDTLS_ECP_DP_SECP224R1,    21,     224,    "secp224r1"         },#endif#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)    { MBEDTLS_ECP_DP_SECP224K1,    20,     224,    "secp224k1"         },#endif#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)    { MBEDTLS_ECP_DP_SECP192R1,    19,     192,    "secp192r1"         },#endif#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)    { MBEDTLS_ECP_DP_SECP192K1,    18,     192,    "secp192k1"         },#endif    { MBEDTLS_ECP_DP_NONE,          0,     0,      NULL                },};#define ECP_NB_CURVES   sizeof( ecp_supported_curves ) /    \                        sizeof( ecp_supported_curves[0] )static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];/* * List of supported curves and associated info */const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list( void ){    return( ecp_supported_curves );}/* * List of supported curves, group ID only */const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list( void ){    static int init_done = 0;    if( ! init_done )    {        size_t i = 0;        const mbedtls_ecp_curve_info *curve_info;        for( curve_info = mbedtls_ecp_curve_list();             curve_info->grp_id != MBEDTLS_ECP_DP_NONE;             curve_info++ )        {            ecp_supported_grp_id[i++] = curve_info->grp_id;        }        ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;        init_done = 1;    }    return( ecp_supported_grp_id );}/* * Get the curve info for the internal identifier */const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id( mbedtls_ecp_group_id grp_id ){    const mbedtls_ecp_curve_info *curve_info;    for( curve_info = mbedtls_ecp_curve_list();         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;         curve_info++ )    {        if( curve_info->grp_id == grp_id )            return( curve_info );    }    return( NULL );}/* * Get the curve info from the TLS identifier */const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id( uint16_t tls_id ){    const mbedtls_ecp_curve_info *curve_info;    for( curve_info = mbedtls_ecp_curve_list();         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;         curve_info++ )    {        if( curve_info->tls_id == tls_id )            return( curve_info );    }    return( NULL );}/* * Get the curve info from the name */const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name( const char *name ){    const mbedtls_ecp_curve_info *curve_info;    for( curve_info = mbedtls_ecp_curve_list();         curve_info->grp_id != MBEDTLS_ECP_DP_NONE;         curve_info++ )    {        if( strcmp( curve_info->name, name ) == 0 )            return( curve_info );    }    return( NULL );}/* * Get the type of a curve */static inline ecp_curve_type ecp_get_type( const mbedtls_ecp_group *grp ){    if( grp->G.X.p == NULL )        return( ECP_TYPE_NONE );    if( grp->G.Y.p == NULL )        return( ECP_TYPE_MONTGOMERY );    else        return( ECP_TYPE_SHORT_WEIERSTRASS );}/* * Initialize (the components of) a point */void mbedtls_ecp_point_init( mbedtls_ecp_point *pt ){    if( pt == NULL )        return;    mbedtls_mpi_init( &pt->X );    mbedtls_mpi_init( &pt->Y );    mbedtls_mpi_init( &pt->Z );}/* * Initialize (the components of) a group */void mbedtls_ecp_group_init( mbedtls_ecp_group *grp ){    if( grp == NULL )        return;    memset( grp, 0, sizeof( mbedtls_ecp_group ) );}/* * Initialize (the components of) a key pair */void mbedtls_ecp_keypair_init( mbedtls_ecp_keypair *key ){    if( key == NULL )        return;    mbedtls_ecp_group_init( &key->grp );    mbedtls_mpi_init( &key->d );    mbedtls_ecp_point_init( &key->Q );}/* * Unallocate (the components of) a point */void mbedtls_ecp_point_free( mbedtls_ecp_point *pt ){    if( pt == NULL )        return;    mbedtls_mpi_free( &( pt->X ) );    mbedtls_mpi_free( &( pt->Y ) );    mbedtls_mpi_free( &( pt->Z ) );}/* * Unallocate (the components of) a group */void mbedtls_ecp_group_free( mbedtls_ecp_group *grp ){    size_t i;    if( grp == NULL )        return;    if( grp->h != 1 )    {        mbedtls_mpi_free( &grp->P );        mbedtls_mpi_free( &grp->A );        mbedtls_mpi_free( &grp->B );        mbedtls_ecp_point_free( &grp->G );        mbedtls_mpi_free( &grp->N );    }    if( grp->T != NULL )    {        for( i = 0; i < grp->T_size; i++ )            mbedtls_ecp_point_free( &grp->T[i] );        mbedtls_free( grp->T );    }    mbedtls_zeroize( grp, sizeof( mbedtls_ecp_group ) );}/* * Unallocate (the components of) a key pair */void mbedtls_ecp_keypair_free( mbedtls_ecp_keypair *key ){    if( key == NULL )        return;    mbedtls_ecp_group_free( &key->grp );    mbedtls_mpi_free( &key->d );    mbedtls_ecp_point_free( &key->Q );}/* * Copy the contents of a point */int mbedtls_ecp_copy( mbedtls_ecp_point *P, const mbedtls_ecp_point *Q ){    int ret;    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->X, &Q->X ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Y, &Q->Y ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &P->Z, &Q->Z ) );cleanup:    return( ret );}/* * Copy the contents of a group object */int mbedtls_ecp_group_copy( mbedtls_ecp_group *dst, const mbedtls_ecp_group *src ){    return mbedtls_ecp_group_load( dst, src->id );}/* * Set point to zero */int mbedtls_ecp_set_zero( mbedtls_ecp_point *pt ){    int ret;    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->X , 1 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Y , 1 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z , 0 ) );cleanup:    return( ret );}/* * Tell if a point is zero */int mbedtls_ecp_is_zero( mbedtls_ecp_point *pt ){    return( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 );}/* * Compare two points lazyly */int mbedtls_ecp_point_cmp( const mbedtls_ecp_point *P,                           const mbedtls_ecp_point *Q ){    if( mbedtls_mpi_cmp_mpi( &P->X, &Q->X ) == 0 &&        mbedtls_mpi_cmp_mpi( &P->Y, &Q->Y ) == 0 &&        mbedtls_mpi_cmp_mpi( &P->Z, &Q->Z ) == 0 )    {        return( 0 );    }    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );}/* * Import a non-zero point from ASCII strings */int mbedtls_ecp_point_read_string( mbedtls_ecp_point *P, int radix,                           const char *x, const char *y ){    int ret;    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->X, radix, x ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &P->Y, radix, y ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );cleanup:    return( ret );}/* * Export a point into unsigned binary data (SEC1 2.3.3) */int mbedtls_ecp_point_write_binary( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *P,                            int format, size_t *olen,                            unsigned char *buf, size_t buflen ){    int ret = 0;    size_t plen;    if( format != MBEDTLS_ECP_PF_UNCOMPRESSED &&        format != MBEDTLS_ECP_PF_COMPRESSED )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    /*     * Common case: P == 0     */    if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )    {        if( buflen < 1 )            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );        buf[0] = 0x00;        *olen = 1;        return( 0 );    }    plen = mbedtls_mpi_size( &grp->P );    if( format == MBEDTLS_ECP_PF_UNCOMPRESSED )    {        *olen = 2 * plen + 1;        if( buflen < *olen )            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );        buf[0] = 0x04;        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->Y, buf + 1 + plen, plen ) );    }    else if( format == MBEDTLS_ECP_PF_COMPRESSED )    {        *olen = plen + 1;        if( buflen < *olen )            return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );        buf[0] = 0x02 + mbedtls_mpi_get_bit( &P->Y, 0 );        MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &P->X, buf + 1, plen ) );    }cleanup:    return( ret );}/* * Import a point from unsigned binary data (SEC1 2.3.4) */int mbedtls_ecp_point_read_binary( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,                           const unsigned char *buf, size_t ilen ){    int ret;    size_t plen;    if( ilen < 1 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    if( buf[0] == 0x00 )    {        if( ilen == 1 )            return( mbedtls_ecp_set_zero( pt ) );        else            return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    }    plen = mbedtls_mpi_size( &grp->P );    if( buf[0] != 0x04 )        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );    if( ilen != 2 * plen + 1 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->X, buf + 1, plen ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &pt->Y, buf + 1 + plen, plen ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );cleanup:    return( ret );}/* * Import a point from a TLS ECPoint record (RFC 4492) *      struct { *          opaque point <1..2^8-1>; *      } ECPoint; */int mbedtls_ecp_tls_read_point( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,                        const unsigned char **buf, size_t buf_len ){    unsigned char data_len;    const unsigned char *buf_start;    /*     * We must have at least two bytes (1 for length, at least one for data)     */    if( buf_len < 2 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    data_len = *(*buf)++;    if( data_len < 1 || data_len > buf_len - 1 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    /*     * Save buffer start for read_binary and update buf     */    buf_start = *buf;    *buf += data_len;    return mbedtls_ecp_point_read_binary( grp, pt, buf_start, data_len );}/* * Export a point as a TLS ECPoint record (RFC 4492) *      struct { *          opaque point <1..2^8-1>; *      } ECPoint; */int mbedtls_ecp_tls_write_point( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,                         int format, size_t *olen,                         unsigned char *buf, size_t blen ){    int ret;    /*     * buffer length must be at least one, for our length byte     */    if( blen < 1 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    if( ( ret = mbedtls_ecp_point_write_binary( grp, pt, format,                    olen, buf + 1, blen - 1) ) != 0 )        return( ret );    /*     * write length to the first byte and update total length     */    buf[0] = (unsigned char) *olen;    ++*olen;    return( 0 );}/* * Set a group from an ECParameters record (RFC 4492) */int mbedtls_ecp_tls_read_group( mbedtls_ecp_group *grp, const unsigned char **buf, size_t len ){    uint16_t tls_id;    const mbedtls_ecp_curve_info *curve_info;    /*     * We expect at least three bytes (see below)     */    if( len < 3 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    /*     * First byte is curve_type; only named_curve is handled     */    if( *(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    /*     * Next two bytes are the namedcurve value     */    tls_id = *(*buf)++;    tls_id <<= 8;    tls_id |= *(*buf)++;    if( ( curve_info = mbedtls_ecp_curve_info_from_tls_id( tls_id ) ) == NULL )        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );    return mbedtls_ecp_group_load( grp, curve_info->grp_id );}/* * Write the ECParameters record corresponding to a group (RFC 4492) */int mbedtls_ecp_tls_write_group( const mbedtls_ecp_group *grp, size_t *olen,                         unsigned char *buf, size_t blen ){    const mbedtls_ecp_curve_info *curve_info;    if( ( curve_info = mbedtls_ecp_curve_info_from_grp_id( grp->id ) ) == NULL )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    /*     * We are going to write 3 bytes (see below)     */    *olen = 3;    if( blen < *olen )        return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );    /*     * First byte is curve_type, always named_curve     */    *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;    /*     * Next two bytes are the namedcurve value     */    buf[0] = curve_info->tls_id >> 8;    buf[1] = curve_info->tls_id & 0xFF;    return( 0 );}/* * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi. * See the documentation of struct mbedtls_ecp_group. * * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf. */static int ecp_modp( mbedtls_mpi *N, const mbedtls_ecp_group *grp ){    int ret;    if( grp->modp == NULL )        return( mbedtls_mpi_mod_mpi( N, N, &grp->P ) );    /* N->s < 0 is a much faster test, which fails only if N is 0 */    if( ( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 ) ||        mbedtls_mpi_bitlen( N ) > 2 * grp->pbits )    {        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    }    MBEDTLS_MPI_CHK( grp->modp( N ) );    /* N->s < 0 is a much faster test, which fails only if N is 0 */    while( N->s < 0 && mbedtls_mpi_cmp_int( N, 0 ) != 0 )        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( N, N, &grp->P ) );    while( mbedtls_mpi_cmp_mpi( N, &grp->P ) >= 0 )        /* we known P, N and the result are positive */        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( N, N, &grp->P ) );cleanup:    return( ret );}/* * Fast mod-p functions expect their argument to be in the 0..p^2 range. * * In order to guarantee that, we need to ensure that operands of * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will * bring the result back to this range. * * The following macros are shortcuts for doing that. *//* * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi */#if defined(MBEDTLS_SELF_TEST)#define INC_MUL_COUNT   mul_count++;#else#define INC_MUL_COUNT#endif#define MOD_MUL( N )    do { MBEDTLS_MPI_CHK( ecp_modp( &N, grp ) ); INC_MUL_COUNT } \                        while( 0 )/* * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi * N->s < 0 is a very fast test, which fails only if N is 0 */#define MOD_SUB( N )                                \    while( N.s < 0 && mbedtls_mpi_cmp_int( &N, 0 ) != 0 )   \        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &N, &N, &grp->P ) )/* * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int. * We known P, N and the result are positive, so sub_abs is correct, and * a bit faster. */#define MOD_ADD( N )                                \    while( mbedtls_mpi_cmp_mpi( &N, &grp->P ) >= 0 )        \        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &N, &N, &grp->P ) )#if defined(ECP_SHORTWEIERSTRASS)/* * For curves in short Weierstrass form, we do all the internal operations in * Jacobian coordinates. * * For multiplication, we'll use a comb method with coutermeasueres against * SPA, hence timing attacks. *//* * Normalize jacobian coordinates so that Z == 0 || Z == 1  (GECC 3.2.1) * Cost: 1N := 1I + 3M + 1S */static int ecp_normalize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt ){    int ret;    mbedtls_mpi Zi, ZZi;    if( mbedtls_mpi_cmp_int( &pt->Z, 0 ) == 0 )        return( 0 );#if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_normalize_jac( grp, pt );    }#endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */    mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );    /*     * X = X / Z^2  mod p     */    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &Zi,      &pt->Z,     &grp->P ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,        &Zi     ) ); MOD_MUL( ZZi );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ZZi    ) ); MOD_MUL( pt->X );    /*     * Y = Y / Z^3  mod p     */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ZZi    ) ); MOD_MUL( pt->Y );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &Zi     ) ); MOD_MUL( pt->Y );    /*     * Z = 1     */    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &pt->Z, 1 ) );cleanup:    mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );    return( ret );}/* * Normalize jacobian coordinates of an array of (pointers to) points, * using Montgomery's trick to perform only one inversion mod P. * (See for example Cohen's "A Course in Computational Algebraic Number * Theory", Algorithm 10.3.4.) * * Warning: fails (returning an error) if one of the points is zero! * This should never happen, see choice of w in ecp_mul_comb(). * * Cost: 1N(t) := 1I + (6t - 3)M + 1S */static int ecp_normalize_jac_many( const mbedtls_ecp_group *grp,                                   mbedtls_ecp_point *T[], size_t t_len ){    int ret;    size_t i;    mbedtls_mpi *c, u, Zi, ZZi;    if( t_len < 2 )        return( ecp_normalize_jac( grp, *T ) );#if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_normalize_jac_many(grp, T, t_len);    }#endif    if( ( c = mbedtls_calloc( t_len, sizeof( mbedtls_mpi ) ) ) == NULL )        return( MBEDTLS_ERR_ECP_ALLOC_FAILED );    mbedtls_mpi_init( &u ); mbedtls_mpi_init( &Zi ); mbedtls_mpi_init( &ZZi );    /*     * c[i] = Z_0 * ... * Z_i     */    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &c[0], &T[0]->Z ) );    for( i = 1; i < t_len; i++ )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &c[i], &c[i-1], &T[i]->Z ) );        MOD_MUL( c[i] );    }    /*     * u = 1 / (Z_0 * ... * Z_n) mod P     */    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &u, &c[t_len-1], &grp->P ) );    for( i = t_len - 1; ; i-- )    {        /*         * Zi = 1 / Z_i mod p         * u = 1 / (Z_0 * ... * Z_i) mod P         */        if( i == 0 ) {            MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Zi, &u ) );        }        else        {            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Zi, &u, &c[i-1]  ) ); MOD_MUL( Zi );            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &u,  &u, &T[i]->Z ) ); MOD_MUL( u );        }        /*         * proceed as in normalize()         */        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ZZi,     &Zi,      &Zi  ) ); MOD_MUL( ZZi );        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->X, &T[i]->X, &ZZi ) ); MOD_MUL( T[i]->X );        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &ZZi ) ); MOD_MUL( T[i]->Y );        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T[i]->Y, &T[i]->Y, &Zi  ) ); MOD_MUL( T[i]->Y );        /*         * Post-precessing: reclaim some memory by shrinking coordinates         * - not storing Z (always 1)         * - shrinking other coordinates, but still keeping the same number of         *   limbs as P, as otherwise it will too likely be regrown too fast.         */        MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->X, grp->P.n ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_shrink( &T[i]->Y, grp->P.n ) );        mbedtls_mpi_free( &T[i]->Z );        if( i == 0 )            break;    }cleanup:    mbedtls_mpi_free( &u ); mbedtls_mpi_free( &Zi ); mbedtls_mpi_free( &ZZi );    for( i = 0; i < t_len; i++ )        mbedtls_mpi_free( &c[i] );    mbedtls_free( c );    return( ret );}/* * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak. * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid */static int ecp_safe_invert_jac( const mbedtls_ecp_group *grp,                            mbedtls_ecp_point *Q,                            unsigned char inv ){    int ret;    unsigned char nonzero;    mbedtls_mpi mQY;    mbedtls_mpi_init( &mQY );    /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mQY, &grp->P, &Q->Y ) );    nonzero = mbedtls_mpi_cmp_int( &Q->Y, 0 ) != 0;    MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &Q->Y, &mQY, inv & nonzero ) );cleanup:    mbedtls_mpi_free( &mQY );    return( ret );}/* * Point doubling R = 2 P, Jacobian coordinates * * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 . * * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring. * * Standard optimizations are applied when curve parameter A is one of { 0, -3 }. * * Cost: 1D := 3M + 4S          (A ==  0) *             4M + 4S          (A == -3) *             3M + 6S + 1a     otherwise */static int ecp_double_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,                           const mbedtls_ecp_point *P ){    int ret;    mbedtls_mpi M, S, T, U;#if defined(MBEDTLS_SELF_TEST)    dbl_count++;#endif#if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_double_jac( grp, R, P );    }#endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */    mbedtls_mpi_init( &M ); mbedtls_mpi_init( &S ); mbedtls_mpi_init( &T ); mbedtls_mpi_init( &U );    /* Special case for A = -3 */    if( grp->A.p == NULL )    {        /* M = 3(X + Z^2)(X - Z^2) */        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T,  &P->X,  &S      ) ); MOD_ADD( T );        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &U,  &P->X,  &S      ) ); MOD_SUB( U );        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &U      ) ); MOD_MUL( S );        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );    }    else    {        /* M = 3.X^2 */        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &P->X   ) ); MOD_MUL( S );        MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &M,  &S,     3       ) ); MOD_ADD( M );        /* Optimize away for "koblitz" curves with A = 0 */        if( mbedtls_mpi_cmp_int( &grp->A, 0 ) != 0 )        {            /* M += A.Z^4 */            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->Z,  &P->Z   ) ); MOD_MUL( S );            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &S,     &S      ) ); MOD_MUL( T );            MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &T,     &grp->A ) ); MOD_MUL( S );            MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &M,  &M,     &S      ) ); MOD_ADD( M );        }    }    /* S = 4.X.Y^2 */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &P->Y,  &P->Y   ) ); MOD_MUL( T );    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &T,  1               ) ); MOD_ADD( T );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &P->X,  &T      ) ); MOD_MUL( S );    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &S,  1               ) ); MOD_ADD( S );    /* U = 8.Y^4 */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &T,     &T      ) ); MOD_MUL( U );    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );    /* T = M^2 - 2.S */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T,  &M,     &M      ) ); MOD_MUL( T );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T,  &T,     &S      ) ); MOD_SUB( T );    /* S = M(S - T) - U */    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &T      ) ); MOD_SUB( S );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S,  &S,     &M      ) ); MOD_MUL( S );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S,  &S,     &U      ) ); MOD_SUB( S );    /* U = 2.Y.Z */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &U,  &P->Y,  &P->Z   ) ); MOD_MUL( U );    MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &U,  1               ) ); MOD_ADD( U );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &T ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &S ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &U ) );cleanup:    mbedtls_mpi_free( &M ); mbedtls_mpi_free( &S ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &U );    return( ret );}/* * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22) * * The coordinates of Q must be normalized (= affine), * but those of P don't need to. R is not normalized. * * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q. * None of these cases can happen as intermediate step in ecp_mul_comb(): * - at each step, P, Q and R are multiples of the base point, the factor *   being less than its order, so none of them is zero; * - Q is an odd multiple of the base point, P an even multiple, *   due to the choice of precomputed points in the modified comb method. * So branches for these cases do not leak secret information. * * We accept Q->Z being unset (saving memory in tables) as meaning 1. * * Cost: 1A := 8M + 3S */static int ecp_add_mixed( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,                          const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q ){    int ret;    mbedtls_mpi T1, T2, T3, T4, X, Y, Z;#if defined(MBEDTLS_SELF_TEST)    add_count++;#endif#if defined(MBEDTLS_ECP_ADD_MIXED_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_add_mixed( grp, R, P, Q );    }#endif /* MBEDTLS_ECP_ADD_MIXED_ALT */    /*     * Trivial cases: P == 0 or Q == 0 (case 1)     */    if( mbedtls_mpi_cmp_int( &P->Z, 0 ) == 0 )        return( mbedtls_ecp_copy( R, Q ) );    if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 0 ) == 0 )        return( mbedtls_ecp_copy( R, P ) );    /*     * Make sure Q coordinates are normalized     */    if( Q->Z.p != NULL && mbedtls_mpi_cmp_int( &Q->Z, 1 ) != 0 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    mbedtls_mpi_init( &T1 ); mbedtls_mpi_init( &T2 ); mbedtls_mpi_init( &T3 ); mbedtls_mpi_init( &T4 );    mbedtls_mpi_init( &X ); mbedtls_mpi_init( &Y ); mbedtls_mpi_init( &Z );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &P->Z,  &P->Z ) );  MOD_MUL( T1 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T1,    &P->Z ) );  MOD_MUL( T2 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T1,  &T1,    &Q->X ) );  MOD_MUL( T1 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T2,  &T2,    &Q->Y ) );  MOD_MUL( T2 );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T1,  &T1,    &P->X ) );  MOD_SUB( T1 );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T2,  &T2,    &P->Y ) );  MOD_SUB( T2 );    /* Special cases (2) and (3) */    if( mbedtls_mpi_cmp_int( &T1, 0 ) == 0 )    {        if( mbedtls_mpi_cmp_int( &T2, 0 ) == 0 )        {            ret = ecp_double_jac( grp, R, P );            goto cleanup;        }        else        {            ret = mbedtls_ecp_set_zero( R );            goto cleanup;        }    }    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &Z,   &P->Z,  &T1   ) );  MOD_MUL( Z  );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T1,    &T1   ) );  MOD_MUL( T3 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T3,    &T1   ) );  MOD_MUL( T4 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &P->X ) );  MOD_MUL( T3 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_int( &T1,  &T3,    2     ) );  MOD_ADD( T1 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &X,   &T2,    &T2   ) );  MOD_MUL( X  );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T1   ) );  MOD_SUB( X  );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &X,   &X,     &T4   ) );  MOD_SUB( X  );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T3,  &T3,    &X    ) );  MOD_SUB( T3 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T3,  &T3,    &T2   ) );  MOD_MUL( T3 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T4,  &T4,    &P->Y ) );  MOD_MUL( T4 );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &Y,   &T3,    &T4   ) );  MOD_SUB( Y  );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->X, &X ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Y, &Y ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &R->Z, &Z ) );cleanup:    mbedtls_mpi_free( &T1 ); mbedtls_mpi_free( &T2 ); mbedtls_mpi_free( &T3 ); mbedtls_mpi_free( &T4 );    mbedtls_mpi_free( &X ); mbedtls_mpi_free( &Y ); mbedtls_mpi_free( &Z );    return( ret );}/* * Randomize jacobian coordinates: * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l * This is sort of the reverse operation of ecp_normalize_jac(). * * This countermeasure was first suggested in [2]. */static int ecp_randomize_jac( const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ){    int ret;    mbedtls_mpi l, ll;    size_t p_size;    int count = 0;#if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_randomize_jac( grp, pt, f_rng, p_rng );    }#endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */    p_size = ( grp->pbits + 7 ) / 8;    mbedtls_mpi_init( &l ); mbedtls_mpi_init( &ll );    /* Generate l such that 1 < l < p */    do    {        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );        while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );        if( count++ > 10 )            return( MBEDTLS_ERR_ECP_RANDOM_FAILED );    }    while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );    /* Z = l * Z */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Z,   &pt->Z,     &l  ) ); MOD_MUL( pt->Z );    /* X = l^2 * X */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &l,         &l  ) ); MOD_MUL( ll );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->X,   &pt->X,     &ll ) ); MOD_MUL( pt->X );    /* Y = l^3 * Y */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ll,      &ll,        &l  ) ); MOD_MUL( ll );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &pt->Y,   &pt->Y,     &ll ) ); MOD_MUL( pt->Y );cleanup:    mbedtls_mpi_free( &l ); mbedtls_mpi_free( &ll );    return( ret );}/* * Check and define parameters used by the comb method (see below for details) */#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"#endif/* d = ceil( n / w ) */#define COMB_MAX_D      ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2/* number of precomputed points */#define COMB_MAX_PRE    ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) )/* * Compute the representation of m that will be used with our comb method. * * The basic comb method is described in GECC 3.44 for example. We use a * modified version that provides resistance to SPA by avoiding zero * digits in the representation as in [3]. We modify the method further by * requiring that all K_i be odd, which has the small cost that our * representation uses one more K_i, due to carries. * * Also, for the sake of compactness, only the seven low-order bits of x[i] * are used to represent K_i, and the msb of x[i] encodes the the sign (s_i in * the paper): it is set if and only if if s_i == -1; * * Calling conventions: * - x is an array of size d + 1 * - w is the size, ie number of teeth, of the comb, and must be between *   2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE) * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d *   (the result will be incorrect if these assumptions are not satisfied) */static void ecp_comb_fixed( unsigned char x[], size_t d,                            unsigned char w, const mbedtls_mpi *m ){    size_t i, j;    unsigned char c, cc, adjust;    memset( x, 0, d+1 );    /* First get the classical comb values (except for x_d = 0) */    for( i = 0; i < d; i++ )        for( j = 0; j < w; j++ )            x[i] |= mbedtls_mpi_get_bit( m, i + d * j ) << j;    /* Now make sure x_1 .. x_d are odd */    c = 0;    for( i = 1; i <= d; i++ )    {        /* Add carry and update it */        cc   = x[i] & c;        x[i] = x[i] ^ c;        c = cc;        /* Adjust if needed, avoiding branches */        adjust = 1 - ( x[i] & 0x01 );        c   |= x[i] & ( x[i-1] * adjust );        x[i] = x[i] ^ ( x[i-1] * adjust );        x[i-1] |= adjust << 7;    }}/* * Precompute points for the comb method * * If i = i_{w-1} ... i_1 is the binary representation of i, then * T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P * * T must be able to hold 2^{w - 1} elements * * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1) */static int ecp_precompute_comb( const mbedtls_ecp_group *grp,                                mbedtls_ecp_point T[], const mbedtls_ecp_point *P,                                unsigned char w, size_t d ){    int ret;    unsigned char i, k;    size_t j;    mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1];    /*     * Set T[0] = P and     * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)     */    MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &T[0], P ) );    k = 0;    for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )    {        cur = T + i;        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( cur, T + ( i >> 1 ) ) );        for( j = 0; j < d; j++ )            MBEDTLS_MPI_CHK( ecp_double_jac( grp, cur, cur ) );        TT[k++] = cur;    }    MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );    /*     * Compute the remaining ones using the minimal number of additions     * Be careful to update T[2^l] only after using it!     */    k = 0;    for( i = 1; i < ( 1U << ( w - 1 ) ); i <<= 1 )    {        j = i;        while( j-- )        {            MBEDTLS_MPI_CHK( ecp_add_mixed( grp, &T[i + j], &T[j], &T[i] ) );            TT[k++] = &T[i + j];        }    }    MBEDTLS_MPI_CHK( ecp_normalize_jac_many( grp, TT, k ) );cleanup:    return( ret );}/* * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ] */static int ecp_select_comb( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,                            const mbedtls_ecp_point T[], unsigned char t_len,                            unsigned char i ){    int ret;    unsigned char ii, j;    /* Ignore the "sign" bit and scale down */    ii =  ( i & 0x7Fu ) >> 1;    /* Read the whole table to thwart cache-based timing attacks */    for( j = 0; j < t_len; j++ )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->X, &T[j].X, j == ii ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &R->Y, &T[j].Y, j == ii ) );    }    /* Safely invert result if i is "negative" */    MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, i >> 7 ) );cleanup:    return( ret );}/* * Core multiplication algorithm for the (modified) comb method. * This part is actually common with the basic comb method (GECC 3.44) * * Cost: d A + d D + 1 R */static int ecp_mul_comb_core( const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,                              const mbedtls_ecp_point T[], unsigned char t_len,                              const unsigned char x[], size_t d,                              int (*f_rng)(void *, unsigned char *, size_t),                              void *p_rng ){    int ret;    mbedtls_ecp_point Txi;    size_t i;    mbedtls_ecp_point_init( &Txi );    /* Start with a non-zero point and randomize its coordinates */    i = d;    MBEDTLS_MPI_CHK( ecp_select_comb( grp, R, T, t_len, x[i] ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 1 ) );    if( f_rng != 0 )        MBEDTLS_MPI_CHK( ecp_randomize_jac( grp, R, f_rng, p_rng ) );    while( i-- != 0 )    {        MBEDTLS_MPI_CHK( ecp_double_jac( grp, R, R ) );        MBEDTLS_MPI_CHK( ecp_select_comb( grp, &Txi, T, t_len, x[i] ) );        MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, R, &Txi ) );    }cleanup:    mbedtls_ecp_point_free( &Txi );    return( ret );}/* * Multiplication using the comb method, * for curves in short Weierstrass form */static int ecp_mul_comb( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,                         const mbedtls_mpi *m, const mbedtls_ecp_point *P,                         int (*f_rng)(void *, unsigned char *, size_t),                         void *p_rng ){    int ret;    unsigned char w, m_is_odd, p_eq_g, pre_len, i;    size_t d;    unsigned char k[COMB_MAX_D + 1];    mbedtls_ecp_point *T;    mbedtls_mpi M, mm;    mbedtls_mpi_init( &M );    mbedtls_mpi_init( &mm );    /* we need N to be odd to trnaform m in an odd number, check now */    if( mbedtls_mpi_get_bit( &grp->N, 0 ) != 1 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    /*     * Minimize the number of multiplications, that is minimize     * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )     * (see costs of the various parts, with 1S = 1M)     */    w = grp->nbits >= 384 ? 5 : 4;    /*     * If P == G, pre-compute a bit more, since this may be re-used later.     * Just adding one avoids upping the cost of the first mul too much,     * and the memory cost too.     */#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1    p_eq_g = ( mbedtls_mpi_cmp_mpi( &P->Y, &grp->G.Y ) == 0 &&               mbedtls_mpi_cmp_mpi( &P->X, &grp->G.X ) == 0 );    if( p_eq_g )        w++;#else    p_eq_g = 0;#endif    /*     * Make sure w is within bounds.     * (The last test is useful only for very small curves in the test suite.)     */    if( w > MBEDTLS_ECP_WINDOW_SIZE )        w = MBEDTLS_ECP_WINDOW_SIZE;    if( w >= grp->nbits )        w = 2;    /* Other sizes that depend on w */    pre_len = 1U << ( w - 1 );    d = ( grp->nbits + w - 1 ) / w;    /*     * Prepare precomputed points: if P == G we want to     * use grp->T if already initialized, or initialize it.     */    T = p_eq_g ? grp->T : NULL;    if( T == NULL )    {        T = mbedtls_calloc( pre_len, sizeof( mbedtls_ecp_point ) );        if( T == NULL )        {            ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;            goto cleanup;        }        MBEDTLS_MPI_CHK( ecp_precompute_comb( grp, T, P, w, d ) );        if( p_eq_g )        {            grp->T = T;            grp->T_size = pre_len;        }    }    /*     * Make sure M is odd (M = m or M = N - m, since N is odd)     * using the fact that m * P = - (N - m) * P     */    m_is_odd = ( mbedtls_mpi_get_bit( m, 0 ) == 1 );    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &M, m ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &mm, &grp->N, m ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_assign( &M, &mm, ! m_is_odd ) );    /*     * Go for comb multiplication, R = M * P     */    ecp_comb_fixed( k, d, w, &M );    MBEDTLS_MPI_CHK( ecp_mul_comb_core( grp, R, T, pre_len, k, d, f_rng, p_rng ) );    /*     * Now get m * P from M * P and normalize it     */    MBEDTLS_MPI_CHK( ecp_safe_invert_jac( grp, R, ! m_is_odd ) );    MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );cleanup:    if( T != NULL && ! p_eq_g )    {        for( i = 0; i < pre_len; i++ )            mbedtls_ecp_point_free( &T[i] );        mbedtls_free( T );    }    mbedtls_mpi_free( &M );    mbedtls_mpi_free( &mm );    if( ret != 0 )        mbedtls_ecp_point_free( R );    return( ret );}#endif /* ECP_SHORTWEIERSTRASS */#if defined(ECP_MONTGOMERY)/* * For Montgomery curves, we do all the internal arithmetic in projective * coordinates. Import/export of points uses only the x coordinates, which is * internaly represented as X / Z. * * For scalar multiplication, we'll use a Montgomery ladder. *//* * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1 * Cost: 1M + 1I */static int ecp_normalize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P ){    int ret;#if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_normalize_mxz( grp, P );    }#endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */    MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &P->Z, &P->Z, &grp->P ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &P->Z ) ); MOD_MUL( P->X );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &P->Z, 1 ) );cleanup:    return( ret );}/* * Randomize projective x/z coordinates: * (X, Z) -> (l X, l Z) for random l * This is sort of the reverse operation of ecp_normalize_mxz(). * * This countermeasure was first suggested in [2]. * Cost: 2M */static int ecp_randomize_mxz( const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ){    int ret;    mbedtls_mpi l;    size_t p_size;    int count = 0;#if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_randomize_mxz( grp, P, f_rng, p_rng );    }#endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */    p_size = ( grp->pbits + 7 ) / 8;    mbedtls_mpi_init( &l );    /* Generate l such that 1 < l < p */    do    {        MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &l, p_size, f_rng, p_rng ) );        while( mbedtls_mpi_cmp_mpi( &l, &grp->P ) >= 0 )            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( &l, 1 ) );        if( count++ > 10 )            return( MBEDTLS_ERR_ECP_RANDOM_FAILED );    }    while( mbedtls_mpi_cmp_int( &l, 1 ) <= 0 );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->X, &P->X, &l ) ); MOD_MUL( P->X );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &P->Z, &P->Z, &l ) ); MOD_MUL( P->Z );cleanup:    mbedtls_mpi_free( &l );    return( ret );}/* * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q), * for Montgomery curves in x/z coordinates. * * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3 * with * d =  X1 * P = (X2, Z2) * Q = (X3, Z3) * R = (X4, Z4) * S = (X5, Z5) * and eliminating temporary variables tO, ..., t4. * * Cost: 5M + 4S */static int ecp_double_add_mxz( const mbedtls_ecp_group *grp,                               mbedtls_ecp_point *R, mbedtls_ecp_point *S,                               const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,                               const mbedtls_mpi *d ){    int ret;    mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB;#if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT)    if ( mbedtls_internal_ecp_grp_capable( grp ) )    {        return mbedtls_internal_ecp_double_add_mxz( grp, R, S, P, Q, d );    }#endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */    mbedtls_mpi_init( &A ); mbedtls_mpi_init( &AA ); mbedtls_mpi_init( &B );    mbedtls_mpi_init( &BB ); mbedtls_mpi_init( &E ); mbedtls_mpi_init( &C );    mbedtls_mpi_init( &D ); mbedtls_mpi_init( &DA ); mbedtls_mpi_init( &CB );    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &A,    &P->X,   &P->Z ) ); MOD_ADD( A    );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &AA,   &A,      &A    ) ); MOD_MUL( AA   );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &B,    &P->X,   &P->Z ) ); MOD_SUB( B    );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &BB,   &B,      &B    ) ); MOD_MUL( BB   );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &E,    &AA,     &BB   ) ); MOD_SUB( E    );    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &C,    &Q->X,   &Q->Z ) ); MOD_ADD( C    );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &D,    &Q->X,   &Q->Z ) ); MOD_SUB( D    );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DA,   &D,      &A    ) ); MOD_MUL( DA   );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &CB,   &C,      &B    ) ); MOD_MUL( CB   );    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &S->X, &DA,     &CB   ) ); MOD_MUL( S->X );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->X, &S->X,   &S->X ) ); MOD_MUL( S->X );    MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &S->Z, &DA,     &CB   ) ); MOD_SUB( S->Z );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, &S->Z,   &S->Z ) ); MOD_MUL( S->Z );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &S->Z, d,       &S->Z ) ); MOD_MUL( S->Z );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->X, &AA,     &BB   ) ); MOD_MUL( R->X );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &grp->A, &E    ) ); MOD_MUL( R->Z );    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &R->Z, &BB,     &R->Z ) ); MOD_ADD( R->Z );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &R->Z, &E,      &R->Z ) ); MOD_MUL( R->Z );cleanup:    mbedtls_mpi_free( &A ); mbedtls_mpi_free( &AA ); mbedtls_mpi_free( &B );    mbedtls_mpi_free( &BB ); mbedtls_mpi_free( &E ); mbedtls_mpi_free( &C );    mbedtls_mpi_free( &D ); mbedtls_mpi_free( &DA ); mbedtls_mpi_free( &CB );    return( ret );}/* * Multiplication with Montgomery ladder in x/z coordinates, * for curves in Montgomery form */static int ecp_mul_mxz( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,                        const mbedtls_mpi *m, const mbedtls_ecp_point *P,                        int (*f_rng)(void *, unsigned char *, size_t),                        void *p_rng ){    int ret;    size_t i;    unsigned char b;    mbedtls_ecp_point RP;    mbedtls_mpi PX;    mbedtls_ecp_point_init( &RP ); mbedtls_mpi_init( &PX );    /* Save PX and read from P before writing to R, in case P == R */    MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &PX, &P->X ) );    MBEDTLS_MPI_CHK( mbedtls_ecp_copy( &RP, P ) );    /* Set R to zero in modified x/z coordinates */    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->X, 1 ) );    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &R->Z, 0 ) );    mbedtls_mpi_free( &R->Y );    /* RP.X might be sligtly larger than P, so reduce it */    MOD_ADD( RP.X );    /* Randomize coordinates of the starting point */    if( f_rng != NULL )        MBEDTLS_MPI_CHK( ecp_randomize_mxz( grp, &RP, f_rng, p_rng ) );    /* Loop invariant: R = result so far, RP = R + P */    i = mbedtls_mpi_bitlen( m ); /* one past the (zero-based) most significant bit */    while( i-- > 0 )    {        b = mbedtls_mpi_get_bit( m, i );        /*         *  if (b) R = 2R + P else R = 2R,         * which is:         *  if (b) double_add( RP, R, RP, R )         *  else   double_add( R, RP, R, RP )         * but using safe conditional swaps to avoid leaks         */        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );        MBEDTLS_MPI_CHK( ecp_double_add_mxz( grp, R, &RP, R, &RP, &PX ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->X, &RP.X, b ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_safe_cond_swap( &R->Z, &RP.Z, b ) );    }    MBEDTLS_MPI_CHK( ecp_normalize_mxz( grp, R ) );cleanup:    mbedtls_ecp_point_free( &RP ); mbedtls_mpi_free( &PX );    return( ret );}#endif /* ECP_MONTGOMERY *//* * Multiplication R = m * P */int mbedtls_ecp_mul( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,             const mbedtls_mpi *m, const mbedtls_ecp_point *P,             int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ){    int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;#if defined(MBEDTLS_ECP_INTERNAL_ALT)    char is_grp_capable = 0;#endif    /* Common sanity checks */    if( mbedtls_mpi_cmp_int( &P->Z, 1 ) != 0 )        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    if( ( ret = mbedtls_ecp_check_privkey( grp, m ) ) != 0 ||        ( ret = mbedtls_ecp_check_pubkey( grp, P ) ) != 0 )        return( ret );#if defined(MBEDTLS_ECP_INTERNAL_ALT)    if ( is_grp_capable = mbedtls_internal_ecp_grp_capable( grp )  )    {        MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );    }#endif /* MBEDTLS_ECP_INTERNAL_ALT */#if defined(ECP_MONTGOMERY)    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )        ret = ecp_mul_mxz( grp, R, m, P, f_rng, p_rng );#endif#if defined(ECP_SHORTWEIERSTRASS)    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )        ret = ecp_mul_comb( grp, R, m, P, f_rng, p_rng );#endif#if defined(MBEDTLS_ECP_INTERNAL_ALT)cleanup:    if ( is_grp_capable )    {        mbedtls_internal_ecp_free( grp );    }#endif /* MBEDTLS_ECP_INTERNAL_ALT */    return( ret );}#if defined(ECP_SHORTWEIERSTRASS)/* * Check that an affine point is valid as a public key, * short weierstrass curves (SEC1 3.2.3.1) */static int ecp_check_pubkey_sw( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ){    int ret;    mbedtls_mpi YY, RHS;    /* pt coordinates must be normalized for our checks */    if( mbedtls_mpi_cmp_int( &pt->X, 0 ) < 0 ||        mbedtls_mpi_cmp_int( &pt->Y, 0 ) < 0 ||        mbedtls_mpi_cmp_mpi( &pt->X, &grp->P ) >= 0 ||        mbedtls_mpi_cmp_mpi( &pt->Y, &grp->P ) >= 0 )        return( MBEDTLS_ERR_ECP_INVALID_KEY );    mbedtls_mpi_init( &YY ); mbedtls_mpi_init( &RHS );    /*     * YY = Y^2     * RHS = X (X^2 + A) + B = X^3 + A X + B     */    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &YY,  &pt->Y,   &pt->Y  ) );  MOD_MUL( YY  );    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &pt->X,   &pt->X  ) );  MOD_MUL( RHS );    /* Special case for A = -3 */    if( grp->A.p == NULL )    {        MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &RHS, &RHS, 3       ) );  MOD_SUB( RHS );    }    else    {        MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS, &grp->A ) );  MOD_ADD( RHS );    }    MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &RHS, &RHS,     &pt->X  ) );  MOD_MUL( RHS );    MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &RHS, &RHS,     &grp->B ) );  MOD_ADD( RHS );    if( mbedtls_mpi_cmp_mpi( &YY, &RHS ) != 0 )        ret = MBEDTLS_ERR_ECP_INVALID_KEY;cleanup:    mbedtls_mpi_free( &YY ); mbedtls_mpi_free( &RHS );    return( ret );}#endif /* ECP_SHORTWEIERSTRASS *//* * R = m * P with shortcuts for m == 1 and m == -1 * NOT constant-time - ONLY for short Weierstrass! */static int mbedtls_ecp_mul_shortcuts( mbedtls_ecp_group *grp,                                      mbedtls_ecp_point *R,                                      const mbedtls_mpi *m,                                      const mbedtls_ecp_point *P ){    int ret;    if( mbedtls_mpi_cmp_int( m, 1 ) == 0 )    {        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );    }    else if( mbedtls_mpi_cmp_int( m, -1 ) == 0 )    {        MBEDTLS_MPI_CHK( mbedtls_ecp_copy( R, P ) );        if( mbedtls_mpi_cmp_int( &R->Y, 0 ) != 0 )            MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &R->Y, &grp->P, &R->Y ) );    }    else    {        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( grp, R, m, P, NULL, NULL ) );    }cleanup:    return( ret );}/* * Linear combination * NOT constant-time */int mbedtls_ecp_muladd( mbedtls_ecp_group *grp, mbedtls_ecp_point *R,             const mbedtls_mpi *m, const mbedtls_ecp_point *P,             const mbedtls_mpi *n, const mbedtls_ecp_point *Q ){    int ret;    mbedtls_ecp_point mP;#if defined(MBEDTLS_ECP_INTERNAL_ALT)    char is_grp_capable = 0;#endif    if( ecp_get_type( grp ) != ECP_TYPE_SHORT_WEIERSTRASS )        return( MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE );    mbedtls_ecp_point_init( &mP );    MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, &mP, m, P ) );    MBEDTLS_MPI_CHK( mbedtls_ecp_mul_shortcuts( grp, R,   n, Q ) );#if defined(MBEDTLS_ECP_INTERNAL_ALT)    if (  is_grp_capable = mbedtls_internal_ecp_grp_capable( grp )  )    {        MBEDTLS_MPI_CHK( mbedtls_internal_ecp_init( grp ) );    }#endif /* MBEDTLS_ECP_INTERNAL_ALT */    MBEDTLS_MPI_CHK( ecp_add_mixed( grp, R, &mP, R ) );    MBEDTLS_MPI_CHK( ecp_normalize_jac( grp, R ) );cleanup:#if defined(MBEDTLS_ECP_INTERNAL_ALT)    if ( is_grp_capable )    {        mbedtls_internal_ecp_free( grp );    }#endif /* MBEDTLS_ECP_INTERNAL_ALT */    mbedtls_ecp_point_free( &mP );    return( ret );}#if defined(ECP_MONTGOMERY)/* * Check validity of a public key for Montgomery curves with x-only schemes */static int ecp_check_pubkey_mx( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ){    /* [Curve25519 p. 5] Just check X is the correct number of bytes */    if( mbedtls_mpi_size( &pt->X ) > ( grp->nbits + 7 ) / 8 )        return( MBEDTLS_ERR_ECP_INVALID_KEY );    return( 0 );}#endif /* ECP_MONTGOMERY *//* * Check that a point is valid as a public key */int mbedtls_ecp_check_pubkey( const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt ){    /* Must use affine coordinates */    if( mbedtls_mpi_cmp_int( &pt->Z, 1 ) != 0 )        return( MBEDTLS_ERR_ECP_INVALID_KEY );#if defined(ECP_MONTGOMERY)    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )        return( ecp_check_pubkey_mx( grp, pt ) );#endif#if defined(ECP_SHORTWEIERSTRASS)    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )        return( ecp_check_pubkey_sw( grp, pt ) );#endif    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );}/* * Check that an mbedtls_mpi is valid as a private key */int mbedtls_ecp_check_privkey( const mbedtls_ecp_group *grp, const mbedtls_mpi *d ){#if defined(ECP_MONTGOMERY)    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )    {        /* see [Curve25519] page 5 */        if( mbedtls_mpi_get_bit( d, 0 ) != 0 ||            mbedtls_mpi_get_bit( d, 1 ) != 0 ||            mbedtls_mpi_get_bit( d, 2 ) != 0 ||            mbedtls_mpi_bitlen( d ) - 1 != grp->nbits ) /* mbedtls_mpi_bitlen is one-based! */            return( MBEDTLS_ERR_ECP_INVALID_KEY );        else            return( 0 );    }#endif /* ECP_MONTGOMERY */#if defined(ECP_SHORTWEIERSTRASS)    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )    {        /* see SEC1 3.2 */        if( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||            mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 )            return( MBEDTLS_ERR_ECP_INVALID_KEY );        else            return( 0 );    }#endif /* ECP_SHORTWEIERSTRASS */    return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );}/* * Generate a keypair with configurable base point */int mbedtls_ecp_gen_keypair_base( mbedtls_ecp_group *grp,                     const mbedtls_ecp_point *G,                     mbedtls_mpi *d, mbedtls_ecp_point *Q,                     int (*f_rng)(void *, unsigned char *, size_t),                     void *p_rng ){    int ret;    size_t n_size = ( grp->nbits + 7 ) / 8;#if defined(ECP_MONTGOMERY)    if( ecp_get_type( grp ) == ECP_TYPE_MONTGOMERY )    {        /* [M225] page 5 */        size_t b;        do {            MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( d, n_size, f_rng, p_rng ) );        } while( mbedtls_mpi_bitlen( d ) == 0);        /* Make sure the most significant bit is nbits */        b = mbedtls_mpi_bitlen( d ) - 1; /* mbedtls_mpi_bitlen is one-based */        if( b > grp->nbits )            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, b - grp->nbits ) );        else            MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, grp->nbits, 1 ) );        /* Make sure the last three bits are unset */        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 0, 0 ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 1, 0 ) );        MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit( d, 2, 0 ) );    }    else#endif /* ECP_MONTGOMERY */#if defined(ECP_SHORTWEIERSTRASS)    if( ecp_get_type( grp ) == ECP_TYPE_SHORT_WEIERSTRASS )    {        /* SEC1 3.2.1: Generate d such that 1 <= n < N */        int count = 0;        unsigned char rnd[MBEDTLS_ECP_MAX_BYTES];        /*         * Match the procedure given in RFC 6979 (deterministic ECDSA):         * - use the same byte ordering;         * - keep the leftmost nbits bits of the generated octet string;         * - try until result is in the desired range.         * This also avoids any biais, which is especially important for ECDSA.         */        do        {            MBEDTLS_MPI_CHK( f_rng( p_rng, rnd, n_size ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( d, rnd, n_size ) );            MBEDTLS_MPI_CHK( mbedtls_mpi_shift_r( d, 8 * n_size - grp->nbits ) );            /*             * Each try has at worst a probability 1/2 of failing (the msb has             * a probability 1/2 of being 0, and then the result will be < N),             * so after 30 tries failure probability is a most 2**(-30).             *             * For most curves, 1 try is enough with overwhelming probability,             * since N starts with a lot of 1s in binary, but some curves             * such as secp224k1 are actually very close to the worst case.             */            if( ++count > 30 )                return( MBEDTLS_ERR_ECP_RANDOM_FAILED );        }        while( mbedtls_mpi_cmp_int( d, 1 ) < 0 ||               mbedtls_mpi_cmp_mpi( d, &grp->N ) >= 0 );    }    else#endif /* ECP_SHORTWEIERSTRASS */        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );cleanup:    if( ret != 0 )        return( ret );    return( mbedtls_ecp_mul( grp, Q, d, G, f_rng, p_rng ) );}/* * Generate key pair, wrapper for conventional base point */int mbedtls_ecp_gen_keypair( mbedtls_ecp_group *grp,                             mbedtls_mpi *d, mbedtls_ecp_point *Q,                             int (*f_rng)(void *, unsigned char *, size_t),                             void *p_rng ){    return( mbedtls_ecp_gen_keypair_base( grp, &grp->G, d, Q, f_rng, p_rng ) );}/* * Generate a keypair, prettier wrapper */int mbedtls_ecp_gen_key( mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,                int (*f_rng)(void *, unsigned char *, size_t), void *p_rng ){    int ret;    if( ( ret = mbedtls_ecp_group_load( &key->grp, grp_id ) ) != 0 )        return( ret );    return( mbedtls_ecp_gen_keypair( &key->grp, &key->d, &key->Q, f_rng, p_rng ) );}/* * Check a public-private key pair */int mbedtls_ecp_check_pub_priv( const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv ){    int ret;    mbedtls_ecp_point Q;    mbedtls_ecp_group grp;    if( pub->grp.id == MBEDTLS_ECP_DP_NONE ||        pub->grp.id != prv->grp.id ||        mbedtls_mpi_cmp_mpi( &pub->Q.X, &prv->Q.X ) ||        mbedtls_mpi_cmp_mpi( &pub->Q.Y, &prv->Q.Y ) ||        mbedtls_mpi_cmp_mpi( &pub->Q.Z, &prv->Q.Z ) )    {        return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );    }    mbedtls_ecp_point_init( &Q );    mbedtls_ecp_group_init( &grp );    /* mbedtls_ecp_mul() needs a non-const group... */    mbedtls_ecp_group_copy( &grp, &prv->grp );    /* Also checks d is valid */    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &Q, &prv->d, &prv->grp.G, NULL, NULL ) );    if( mbedtls_mpi_cmp_mpi( &Q.X, &prv->Q.X ) ||        mbedtls_mpi_cmp_mpi( &Q.Y, &prv->Q.Y ) ||        mbedtls_mpi_cmp_mpi( &Q.Z, &prv->Q.Z ) )    {        ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;        goto cleanup;    }cleanup:    mbedtls_ecp_point_free( &Q );    mbedtls_ecp_group_free( &grp );    return( ret );}#if defined(MBEDTLS_SELF_TEST)/* * Checkup routine */int mbedtls_ecp_self_test( int verbose ){    int ret;    size_t i;    mbedtls_ecp_group grp;    mbedtls_ecp_point R, P;    mbedtls_mpi m;    unsigned long add_c_prev, dbl_c_prev, mul_c_prev;    /* exponents especially adapted for secp192r1 */    const char *exponents[] =    {        "000000000000000000000000000000000000000000000001", /* one */        "FFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22830", /* N - 1 */        "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */        "400000000000000000000000000000000000000000000000", /* one and zeros */        "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */        "555555555555555555555555555555555555555555555555", /* 101010... */    };    mbedtls_ecp_group_init( &grp );    mbedtls_ecp_point_init( &R );    mbedtls_ecp_point_init( &P );    mbedtls_mpi_init( &m );    /* Use secp192r1 if available, or any available curve */#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)    MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, MBEDTLS_ECP_DP_SECP192R1 ) );#else    MBEDTLS_MPI_CHK( mbedtls_ecp_group_load( &grp, mbedtls_ecp_curve_list()->grp_id ) );#endif    if( verbose != 0 )        mbedtls_printf( "  ECP test #1 (constant op_count, base point G): " );    /* Do a dummy multiplication first to trigger precomputation */    MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &m, 2 ) );    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &P, &m, &grp.G, NULL, NULL ) );    add_count = 0;    dbl_count = 0;    mul_count = 0;    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );    for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )    {        add_c_prev = add_count;        dbl_c_prev = dbl_count;        mul_c_prev = mul_count;        add_count = 0;        dbl_count = 0;        mul_count = 0;        MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &grp.G, NULL, NULL ) );        if( add_count != add_c_prev ||            dbl_count != dbl_c_prev ||            mul_count != mul_c_prev )        {            if( verbose != 0 )                mbedtls_printf( "failed (%u)\n", (unsigned int) i );            ret = 1;            goto cleanup;        }    }    if( verbose != 0 )        mbedtls_printf( "passed\n" );    if( verbose != 0 )        mbedtls_printf( "  ECP test #2 (constant op_count, other point): " );    /* We computed P = 2G last time, use it */    add_count = 0;    dbl_count = 0;    mul_count = 0;    MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[0] ) );    MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );    for( i = 1; i < sizeof( exponents ) / sizeof( exponents[0] ); i++ )    {        add_c_prev = add_count;        dbl_c_prev = dbl_count;        mul_c_prev = mul_count;        add_count = 0;        dbl_count = 0;        mul_count = 0;        MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &m, 16, exponents[i] ) );        MBEDTLS_MPI_CHK( mbedtls_ecp_mul( &grp, &R, &m, &P, NULL, NULL ) );        if( add_count != add_c_prev ||            dbl_count != dbl_c_prev ||            mul_count != mul_c_prev )        {            if( verbose != 0 )                mbedtls_printf( "failed (%u)\n", (unsigned int) i );            ret = 1;            goto cleanup;        }    }    if( verbose != 0 )        mbedtls_printf( "passed\n" );cleanup:    if( ret < 0 && verbose != 0 )        mbedtls_printf( "Unexpected error, return code = %08X\n", ret );    mbedtls_ecp_group_free( &grp );    mbedtls_ecp_point_free( &R );    mbedtls_ecp_point_free( &P );    mbedtls_mpi_free( &m );    if( verbose != 0 )        mbedtls_printf( "\n" );    return( ret );}#endif /* MBEDTLS_SELF_TEST */#endif /* !MBEDTLS_ECP_ALT */#endif /* MBEDTLS_ECP_C */
 |