| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293 | /** * @file * Main page documentation file. * *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved *  SPDX-License-Identifier: Apache-2.0 * *  Licensed under the Apache License, Version 2.0 (the "License"); you may *  not use this file except in compliance with the License. *  You may obtain a copy of the License at * *  http://www.apache.org/licenses/LICENSE-2.0 * *  Unless required by applicable law or agreed to in writing, software *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. *  See the License for the specific language governing permissions and *  limitations under the License. * *  This file is part of mbed TLS (https://tls.mbed.org) *//** * @mainpage mbed TLS v2.4.0 source code documentation * * This documentation describes the internal structure of mbed TLS.  It was * automatically generated from specially formatted comment blocks in * mbed TLS's source code using Doxygen.  (See * http://www.stack.nl/~dimitri/doxygen/ for more information on Doxygen) * * mbed TLS has a simple setup: it provides the ingredients for an SSL/TLS * implementation. These ingredients are listed as modules in the * \ref mainpage_modules "Modules section". This "Modules section" introduces * the high-level module concepts used throughout this documentation.\n * Some examples of mbed TLS usage can be found in the \ref mainpage_examples * "Examples section". * * @section mainpage_modules Modules * * mbed TLS supports SSLv3 up to TLSv1.2 communication by providing the * following: * - TCP/IP communication functions: listen, connect, accept, read/write. * - SSL/TLS communication functions: init, handshake, read/write. * - X.509 functions: CRT, CRL and key handling * - Random number generation * - Hashing * - Encryption/decryption * * Above functions are split up neatly into logical interfaces. These can be * used separately to provide any of the above functions or to mix-and-match * into an SSL server/client solution that utilises a X.509 PKI. Examples of * such implementations are amply provided with the source code. * * Note that mbed TLS does not provide a control channel or (multiple) session * handling without additional work from the developer. * * @section mainpage_examples Examples * * Example server setup: * * \b Prerequisites: * - X.509 certificate and private key * - session handling functions * * \b Setup: * - Load your certificate and your private RSA key (X.509 interface) * - Setup the listening TCP socket (TCP/IP interface) * - Accept incoming client connection (TCP/IP interface) * - Initialise as an SSL-server (SSL/TLS interface) *   - Set parameters, e.g. authentication, ciphers, CA-chain, key exchange *   - Set callback functions RNG, IO, session handling * - Perform an SSL-handshake (SSL/TLS interface) * - Read/write data (SSL/TLS interface) * - Close and cleanup (all interfaces) * * Example client setup: * * \b Prerequisites: * - X.509 certificate and private key * - X.509 trusted CA certificates * * \b Setup: * - Load the trusted CA certificates (X.509 interface) * - Load your certificate and your private RSA key (X.509 interface) * - Setup a TCP/IP connection (TCP/IP interface) * - Initialise as an SSL-client (SSL/TLS interface) *   - Set parameters, e.g. authentication mode, ciphers, CA-chain, session *   - Set callback functions RNG, IO * - Perform an SSL-handshake (SSL/TLS interface) * - Verify the server certificate (SSL/TLS interface) * - Write/read data (SSL/TLS interface) * - Close and cleanup (all interfaces) */
 |