| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 | #include <polarssl/config.h>#ifdef _MSC_VER#include <basetsd.h>typedef UINT32 uint32_t;#else#include <inttypes.h>#endif/* * 32-bit integer manipulation macros (big endian) */#ifndef GET_ULONG_BE#define GET_ULONG_BE(n,b,i)                             \{                                                       \    (n) = ( (unsigned long) (b)[(i)    ] << 24 )        \        | ( (unsigned long) (b)[(i) + 1] << 16 )        \        | ( (unsigned long) (b)[(i) + 2] <<  8 )        \        | ( (unsigned long) (b)[(i) + 3]       );       \}#endif#ifndef PUT_ULONG_BE#define PUT_ULONG_BE(n,b,i)                             \{                                                       \    (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \    (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \    (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \    (b)[(i) + 3] = (unsigned char) ( (n)       );       \}#endifint unhexify(unsigned char *obuf, const char *ibuf){    unsigned char c, c2;    int len = strlen(ibuf) / 2;    assert(!(strlen(ibuf) %1)); // must be even number of bytes    while (*ibuf != 0)    {        c = *ibuf++;        if( c >= '0' && c <= '9' )            c -= '0';        else if( c >= 'a' && c <= 'f' )            c -= 'a' - 10;        else if( c >= 'A' && c <= 'F' )            c -= 'A' - 10;        else            assert( 0 );        c2 = *ibuf++;        if( c2 >= '0' && c2 <= '9' )            c2 -= '0';        else if( c2 >= 'a' && c2 <= 'f' )            c2 -= 'a' - 10;        else if( c2 >= 'A' && c2 <= 'F' )            c2 -= 'A' - 10;        else            assert( 0 );        *obuf++ = ( c << 4 ) | c2;    }    return len;}void hexify(unsigned char *obuf, const unsigned char *ibuf, int len){    unsigned char l, h;    while (len != 0)    {        h = (*ibuf) / 16;        l = (*ibuf) % 16;        if( h < 10 )            *obuf++ = '0' + h;        else            *obuf++ = 'a' + h - 10;        if( l < 10 )            *obuf++ = '0' + l;        else            *obuf++ = 'a' + l - 10;        ++ibuf;        len--;    }}/** * This function just returns data from rand(). * Although predictable and often similar on multiple * runs, this does not result in identical random on * each run. So do not use this if the results of a * test depend on the random data that is generated. * * rng_state shall be NULL. */static int rnd_std_rand( void *rng_state ){    if( rng_state != NULL )        rng_state  = NULL;    return( rand() );}/** * This function only returns zeros * * rng_state shall be NULL. */static int rnd_zero_rand( void *rng_state ){    if( rng_state != NULL )        rng_state  = NULL;    return( 0 );}typedef struct{    unsigned char *buf;    int length;    int per_call;} rnd_buf_info;/** * This function returns random based on a buffer it receives. * * rng_state shall be a pointer to a rnd_buf_info structure. *  * The number of bytes released from the buffer on each call to * the random function is specified by per_call. (Can be between * 1 and 4) * * After the buffer is empty it will return rand(); */static int rnd_buffer_rand( void *rng_state ){    rnd_buf_info *info = (rnd_buf_info *) rng_state;    int res;    if( rng_state == NULL )        return( rand() );    if( info->per_call > 4 )        info->per_call = 4;    else if( info->per_call < 1 )        info->per_call = 1;    res = rand();    if( info->length >= info->per_call )    {        memcpy( &res, info->buf, info->per_call );        info->buf += info->per_call;        info->length -= info->per_call;    }    else if( info->length > 0 )    {        memcpy( &res, info->buf, info->length );        info->length = 0;    }    return( res );}/** * Info structure for the pseudo random function * * Key should be set at the start to a test-unique value. * Do not forget endianness! * State( v0, v1 ) should be set to zero. */typedef struct{    uint32_t key[16];    uint32_t v0, v1;} rnd_pseudo_info;/** * This function returns random based on a pseudo random function. * This means the results should be identical on all systems. * Pseudo random is based on the XTEA encryption algorithm to * generate pseudorandom. * * rng_state shall be a pointer to a rnd_pseudo_info structure. */static int rnd_pseudo_rand( void *rng_state ){    rnd_pseudo_info *info = (rnd_pseudo_info *) rng_state;    uint32_t i, *k, sum = 0, delta=0x9E3779B9;    if( rng_state == NULL )        return( rand() );    k = info->key;    for( i = 0; i < 32; i++ )    {        info->v0 += (((info->v1 << 4) ^ (info->v1 >> 5)) + info->v1) ^ (sum + k[sum & 3]);        sum += delta;        info->v1 += (((info->v0 << 4) ^ (info->v0 >> 5)) + info->v0) ^ (sum + k[(sum>>11) & 3]);    }    return( info->v0 );}
 |