| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 | #include "fr_md5.h"/*	The below was retrieved from *	http://www.openbsd.org/cgi-bin/cvsweb/~checkout~/src/sys/crypto/md5.c?rev=1.1 *	with the following changes: *	#includes commented out. *	Support context->count as uint32_t[2] instead of uint64_t *	u_int* to uint* *//* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest.	This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. *//*#include <sys/param.h>*//*#include <sys/systm.h>*//*#include <crypto/md5.h>*/#define PUT_64BIT_LE(cp, value) do {				\	(cp)[7] = (value)[1] >> 24;					\	(cp)[6] = (value)[1] >> 16;					\	(cp)[5] = (value)[1] >> 8;					\	(cp)[4] = (value)[1];						\	(cp)[3] = (value)[0] >> 24;					\	(cp)[2] = (value)[0] >> 16;					\	(cp)[1] = (value)[0] >> 8;					\	(cp)[0] = (value)[0]; } while (0)#define PUT_32BIT_LE(cp, value) do {					\	(cp)[3] = (value) >> 24;					\	(cp)[2] = (value) >> 16;					\	(cp)[1] = (value) >> 8;						\	(cp)[0] = (value); } while (0)static uint8_t PADDING[MD5_BLOCK_LENGTH] = {	0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};/* * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious * initialization constants. */voidMD5Init(MD5_CTX *ctx){	ctx->count[0] = 0;	ctx->count[1] = 0;	ctx->state[0] = 0x67452301;	ctx->state[1] = 0xefcdab89;	ctx->state[2] = 0x98badcfe;	ctx->state[3] = 0x10325476;}/* * Update context to reflect the concatenation of another buffer full * of bytes. */voidMD5Update(MD5_CTX *ctx, uint8_t const *input, size_t len){	size_t have, need;	/* Check how many bytes we already have and how many more we need. */	have = (size_t)((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));	need = MD5_BLOCK_LENGTH - have;	/* Update bitcount *//*	ctx->count += (uint64_t)len << 3;*/	if ((ctx->count[0] += ((uint32_t)len << 3)) < (uint32_t)len) {	/* Overflowed ctx->count[0] */		ctx->count[1]++;	}	ctx->count[1] += ((uint32_t)len >> 29);	if (len >= need) {		if (have != 0) {			memcpy(ctx->buffer + have, input, need);			MD5Transform(ctx->state, ctx->buffer);			input += need;			len -= need;			have = 0;		}		/* Process data in MD5_BLOCK_LENGTH-byte chunks. */		while (len >= MD5_BLOCK_LENGTH) {			MD5Transform(ctx->state, input);			input += MD5_BLOCK_LENGTH;			len -= MD5_BLOCK_LENGTH;		}	}	/* Handle any remaining bytes of data. */	if (len != 0)		memcpy(ctx->buffer + have, input, len);}/* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */voidMD5Final(unsigned char digest[MD5_DIGEST_LENGTH], MD5_CTX *ctx){	uint8_t count[8];	size_t padlen;	int i;	/* Convert count to 8 bytes in little endian order. */	PUT_64BIT_LE(count, ctx->count);	/* Pad out to 56 mod 64. */	padlen = MD5_BLOCK_LENGTH -	    ((ctx->count[0] >> 3) & (MD5_BLOCK_LENGTH - 1));	if (padlen < 1 + 8)		padlen += MD5_BLOCK_LENGTH;	MD5Update(ctx, PADDING, padlen - 8);		/* padlen - 8 <= 64 */	MD5Update(ctx, count, 8);	if (digest != NULL) {		for (i = 0; i < 4; i++)			PUT_32BIT_LE(digest + i * 4, ctx->state[i]);	}	memset(ctx, 0, sizeof(*ctx));	/* in case it's sensitive */}/* The four core functions - F1 is optimized somewhat *//* #define F1(x, y, z) (x & y | ~x & z) */#define F1(x, y, z) (z ^ (x & (y ^ z)))#define F2(x, y, z) F1(z, x, y)#define F3(x, y, z) (x ^ y ^ z)#define F4(x, y, z) (y ^ (x | ~z))/* This is the central step in the MD5 algorithm. */#define MD5STEP(f, w, x, y, z, data, s) \	( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )/* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data.  MD5Update blocks * the data and converts bytes into longwords for this routine. */voidMD5Transform(uint32_t state[4], uint8_t const block[MD5_BLOCK_LENGTH]){	uint32_t a, b, c, d, in[MD5_BLOCK_LENGTH / 4];	for (a = 0; a < MD5_BLOCK_LENGTH / 4; a++) {		in[a] = (uint32_t)(		    (uint32_t)(block[a * 4 + 0]) |		    (uint32_t)(block[a * 4 + 1]) <<  8 |		    (uint32_t)(block[a * 4 + 2]) << 16 |		    (uint32_t)(block[a * 4 + 3]) << 24);	}	a = state[0];	b = state[1];	c = state[2];	d = state[3];	MD5STEP(F1, a, b, c, d, in[ 0] + 0xd76aa478,  7);	MD5STEP(F1, d, a, b, c, in[ 1] + 0xe8c7b756, 12);	MD5STEP(F1, c, d, a, b, in[ 2] + 0x242070db, 17);	MD5STEP(F1, b, c, d, a, in[ 3] + 0xc1bdceee, 22);	MD5STEP(F1, a, b, c, d, in[ 4] + 0xf57c0faf,  7);	MD5STEP(F1, d, a, b, c, in[ 5] + 0x4787c62a, 12);	MD5STEP(F1, c, d, a, b, in[ 6] + 0xa8304613, 17);	MD5STEP(F1, b, c, d, a, in[ 7] + 0xfd469501, 22);	MD5STEP(F1, a, b, c, d, in[ 8] + 0x698098d8,  7);	MD5STEP(F1, d, a, b, c, in[ 9] + 0x8b44f7af, 12);	MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);	MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);	MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122,  7);	MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);	MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);	MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);	MD5STEP(F2, a, b, c, d, in[ 1] + 0xf61e2562,  5);	MD5STEP(F2, d, a, b, c, in[ 6] + 0xc040b340,  9);	MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);	MD5STEP(F2, b, c, d, a, in[ 0] + 0xe9b6c7aa, 20);	MD5STEP(F2, a, b, c, d, in[ 5] + 0xd62f105d,  5);	MD5STEP(F2, d, a, b, c, in[10] + 0x02441453,  9);	MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);	MD5STEP(F2, b, c, d, a, in[ 4] + 0xe7d3fbc8, 20);	MD5STEP(F2, a, b, c, d, in[ 9] + 0x21e1cde6,  5);	MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6,  9);	MD5STEP(F2, c, d, a, b, in[ 3] + 0xf4d50d87, 14);	MD5STEP(F2, b, c, d, a, in[ 8] + 0x455a14ed, 20);	MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905,  5);	MD5STEP(F2, d, a, b, c, in[ 2] + 0xfcefa3f8,  9);	MD5STEP(F2, c, d, a, b, in[ 7] + 0x676f02d9, 14);	MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);	MD5STEP(F3, a, b, c, d, in[ 5] + 0xfffa3942,  4);	MD5STEP(F3, d, a, b, c, in[ 8] + 0x8771f681, 11);	MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);	MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);	MD5STEP(F3, a, b, c, d, in[ 1] + 0xa4beea44,  4);	MD5STEP(F3, d, a, b, c, in[ 4] + 0x4bdecfa9, 11);	MD5STEP(F3, c, d, a, b, in[ 7] + 0xf6bb4b60, 16);	MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);	MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6,  4);	MD5STEP(F3, d, a, b, c, in[ 0] + 0xeaa127fa, 11);	MD5STEP(F3, c, d, a, b, in[ 3] + 0xd4ef3085, 16);	MD5STEP(F3, b, c, d, a, in[ 6] + 0x04881d05, 23);	MD5STEP(F3, a, b, c, d, in[ 9] + 0xd9d4d039,  4);	MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);	MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);	MD5STEP(F3, b, c, d, a, in[2 ] + 0xc4ac5665, 23);	MD5STEP(F4, a, b, c, d, in[ 0] + 0xf4292244,  6);	MD5STEP(F4, d, a, b, c, in[7 ] + 0x432aff97, 10);	MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);	MD5STEP(F4, b, c, d, a, in[5 ] + 0xfc93a039, 21);	MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3,  6);	MD5STEP(F4, d, a, b, c, in[3 ] + 0x8f0ccc92, 10);	MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);	MD5STEP(F4, b, c, d, a, in[1 ] + 0x85845dd1, 21);	MD5STEP(F4, a, b, c, d, in[8 ] + 0x6fa87e4f,  6);	MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);	MD5STEP(F4, c, d, a, b, in[6 ] + 0xa3014314, 15);	MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);	MD5STEP(F4, a, b, c, d, in[4 ] + 0xf7537e82,  6);	MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);	MD5STEP(F4, c, d, a, b, in[2 ] + 0x2ad7d2bb, 15);	MD5STEP(F4, b, c, d, a, in[9 ] + 0xeb86d391, 21);	state[0] += a;	state[1] += b;	state[2] += c;	state[3] += d;}
 |