1 CAN Protocol Specification

About this chapter

Megmeet rectifier modules support CAN (Controller Area Network) communication protocol. The monitoring unit supports functions of control, configuration and query etc. via the CAN bus.

CAN bus with the extended frame format CAN2.0B (Can Specification2.0 Part B) is adopted.

All the data are sent in the order of high- low byte.

The communication baud rate is 125kbps.

The frame format of CAN2.0B is as below:

frame start delimiter		arbitra	ation f	ield		control	field	data field	check code	frame end delimiter
SOF	ID	SR R	ID E	ID	R T R	reserved	data length	data	CRC	EOF
/	11 bit s	/	/	18 bits	/	/	/	8 bytes	/	/

Controllable parts used in practical use:

ID domain: 29	
bits	data domain: 8 bytes
frame identifier	data

1.1 ID Domain

The message format of ID domain is defined as follows:

	ID domain																											
2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	٩	8	7	6	5	4	З	2	1	0
8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	5	0	,	0	5	-	5	2		U
r	rotoc		nhor	(6 hite	-)		cub	nodo	oddro		o (Z hito)			Command ID & magazara ID (8 hita)					M/S	reserved bit, 1 must				CN				
	10100	Ji nui	nbei	(0 Dit	5)		Sub-	noue	auure	:55 (1	Dits)		0	mma		o me	essay		o bit	5)	10//3		b	e fill	ed i	n		Т

Details are as below:

Protocol No. (6 bits)

0x21: communication protocol number between the rectifier and the monitoring unit

Sub-node address (7 bits)

It defines the sub-node address in frame transmission. When the master node serves as the sender, it means the address of the targeted slave node; conversely, it means the address of the slave node itself.

0x00: it represents the broadcast address, meaning all the sub-nodes with the same protocol number shall receive and approach this frame.

Command ID & Information ID (8 bits)

They're used to identify information of the communication frame.

- 0x80: Control command ID
- 0x81: Configuration command ID
- 0x82: Query command ID
- 0x40: All real-time data query
- 0x50: Inherent information query

M/S (1 bit)

It's used to identify where the communication frame come.

- 0x0: It means sending from the sub-node.
- 0x1: It means sending from the primary node.

CNT (1 bit)

It's used to determine whether there's subsequent frame data.

0x0: it means the last part of the data.

0x1: it means the next data is included.

In the case that only one frame needs to be transmitted, CNT=0x0.

1.2 Data Domain

The message format of data domain is defined as follows:

data domain								
error type	signal ID	signal						

data domain									
4 bits	12 bits	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7		

1.2.1 Error Type

Table 1-1 Error Type

error type(4 bits)	description
0x0	no error, normal response
0x1	parameter error

0x2	invalid command
0x3	address identification is in
	progress
0x4	electric tag is not input
0x5	hardware fault of electronic
UND UND	tag input
0x6	loading interruption of the
UND UND	rectifier module
	the rectifier module is
0x7	regulating the voltage
	automatically
0x8	equipment cabinet address
0,0	conflict

1.2.2 Signal ID

Table 1-2 Signal ID

signal	signal description	data tuno	noto	default		EEPROM
ID	signal description	uala type	note	value	(W/R)	
			see the			
0x001	feature words of the	ш	corresponding		W/R	VES
0,001	rectifier module		attachment for		VV/IX	120
			details			
	software & hardware		see hardware and			
0x005	version number	VII/VII/VII	software version		W/R	YES
			numbers for details			
			48V			
0v100	DC output voltage		voltage regulation	53 5\/	W/R	
00100	setting value		range	55.5 V	VV/IX	
			(41.5V~58.5V)			
0v101			voltage regulation	52 5\/		VES
02101	derault output voltage	I	range (48V~58V)	55.57		TES
	DC output		48V			
0x102	over-voltage	I	setting range	59.5V	W/R	YES
	protection point		(56V~60.5V)			
0v102	DC output current limit		(0~1.22) rated	1 00		
02103	setting value	I	current	1.22		
0x104	default current limit		(0~1.22) rated	1 22	\//P	VES
0,104	point	I	current	1.22	VV/IX	125
			A: 0 means			YES
0x100	AC current limit setting	A: V	prohibition,	1/1004	\\//D	(no
0,109	& enabling	B: I	1 means enabling	1/1004	W/R	storage
			B: 0~100A			for A)
1	1	1	1		1	

0x10C	WALK-IN time	Ш	unit: s (8s~200s) 0 means prohibition	0 prohibitio n	W/R	YES
0x10D	sequential startup interval	Ш	unit: s (0s~200s) 0 means prohibition	0 prohibitio n	W/R	YES
0x10E	overall operation time	II	unit: hour	0	W/R	YES
0x132	module on/off control(being off completely)	V	0:on 1:off	0:on	W	
0x133	reset control of over- voltage lock	V	0: prohibition 1: reset	0: prohibitio n	W	
0x135	green light flickering control for communication	V	0: prohibition 1: reset	0: prohibitio n	W	
0x13A	address distribution control	V	0: prohibition 1: reset	0: prohibitio n	W	g_uiAdd Identify Flag
0x13B	actions setting after AC phase loss Description: only for three-phase input module(for example R48100G)	V	0: off 1: half load	0: off	W	YES
0x140	indicator control	A: V	see the corresponding attachment for more details	0: automatic (uncontrol led)	W	
0x141	phase loss enabling control description: only for modules with three- phase input(for example R48100G)	V	0: prohibition 1: allowed	0:prohibiti on	W	YES
0x142	alarm shielding	111	see the corresponding attachment for more details		W	
0x143	For communication interruption with the monitoring unit, the yellow light warning is shielded. Description: only for US clients and tools for backstage is	V	0:unshielded 1: shielded	0: unshielde d	W	YES

	configured specially.					
0x170	input power	I	W		R	
0x171	input frequency	I	Hz		R	
0x172	input current	I	A		R	
0x173	DC output power		W		R	
0x174	real-time efficiency	I	100%		R	
0x175	DC output voltage measuring value	Ι	V		R	
0x176	actual output current limit point	I	100% rated current		R	
0x177	actual output power	I	100% power with full load		R	
	input voltage of single					
0x178	phase module	I	V	-	R	
0x179	phase a voltage description: only for the module with three- phase input(R48100G)	A: VII B: I	V	B 0: no phase loss ; 1: phase loss	R	
0x17A	phase b voltage description: only for the module with three- phase input(R48100G)	A: VII B: I	V	B 0: no phase loss ; 1: phase loss	R	
0x17B	phase c voltage description: only for the module with three- phase input(R48100G)	A: VII B: I	V	B 0: no phase loss ; 1: phase loss	R	
0x180	ambient temperature of air inlet	I	C		R	
0x182	output current display value	I	А		R	
0x183	current alarm/status	IV	see the corresponding attachment for more details		R	
0x184	output external voltage	I	V		R	
0x188	rated current	VII	A The reported value is the actual rated current value ×100		R	

For example, the	
reported value of	
100A module is	
100×100=10000.	

			ASCII code is		
		Ш	converted for the host		
0x301	client information 1		computer	W/R	YES
			ASCII code is		
		Ш	converted for the host		
0x302	client information 2		computer	W/R	YES
			ASCII code is		
		II	converted for the host		
0x303	client information 3		computer	W/R	YES
			ASCII code is		
		II	converted for the host		
0x304	client information 4		computer	W/R	YES
			ASCII code is		
		Ш	converted for the host		
0x305	client information 5		computer	W/R	YES
			ASCII code is		
		Ш	converted for the host		
0x306	client information 6		computer	W/R	YES
			ASCII code is		
		II	converted for the host		
0x307	client information 7		computer	W/R	YES
			ASCII code is		
		II	converted for the host		
0x308	client information 8		computer	W/R	YES

1.2.3 Signal Content

Data Type Description

The definition of the signal content format depends on the data type definitions in table 1-3:

data type	description
I	4 bytes fixed-point number (IQ10:
I	2^10)
Ш	4 bytes integer number (IQ0:
	2^0)
	4 bytes defined by the bit

Table	1-3 Data	Type	Descrin	tion
I able	1-5 Dala	Type	Descrip	uon

IV	6 bytes defined by the bit
V	1 byte integer number
VI	2 bytes fixed-point number (IQ10: 2^10)
VII	2 bytes integer number (IQ0: 2^0)

The single signal with four bytes is sent in the way as below:

signal content									
Byte2	Byte3	Byte4	Byte5	Byte6	Byte7				
()	four bytes variables							

The single signal combined with four bytes and two bytes is sent in the way as below:

signal content									
Byte2	Byte3	Byte4	Byte5	Byte6	Byte7				
2 bytes v	variables	4 bytes variables							

The single signal with one byte is sent in the way as below:

signal content										
Byte2	Byte3 Byte4 Byte5 Byte6 Byte7									
0	1 byte variable		()						

Feature Words of Rectifier Module (Signal ID: 0x001)

The same type of modules share some common features, including the powering method, number of AC phase, AC voltage type, rated power, rated efficiency, output voltage type and hardware version etc., all software versions of the module with the same feature words are forward compatible; The monitoring unit can use the feature words to load online and identify the same type of modules; However, if the software version is incompatible due to hardware changes, the hardware version information in the feature word must be modified.

signal content									
Byte2	Byte3	Byte4	Byte5	Byte6	Byte7				
feature words of the rectifier module									

	feature words of the rectifier module																															
3	3	2	2	2	2	2	2	2	2	2	2 2	1	1	1	1	1 1	1	1	1		1	1	9	8	7	6	5	4	3	2	1	0
1	0	9	8	7	6	5	4	3	2	1	1 0	9	8	7	6	6 5	4	3	2		1	0	Ũ	Ũ		Ŭ	Ŭ		Ŭ	-		Ũ
pow ng meth	veri g nod	nur r of pha	nbe AC ase	inp volta	out age		rated output current							rated output current output voltage type						typ	e	mi of	nor har	vers dwa	ion re	v ha	major version of hardware		res Ve	ser ed		
																			000	0:	<90)%										
				00	:														000)1:												
				220	0V														(90	~9	1)%											
				A	С														001	0:									000~111			
																000	.		(91	~9	2)%							00				
				01	:											000	48∨ 001:			0011 : (92~93)%								S	stands			
	:	00		11(0V																								for the			
Sing	jie 		v: India	A	С											001				0100:				minor				1st				
sup	nlv	nh	ase			1 st	ands	for 0	54											~9	4)%			v	arsi	ons	o f	g,	generati			
Sup	ріу	pri	130			0~1	023 s	stands	s for 0)~5	11 5A						241		010)1:								ť	he 7	th		2
01		01		11		for	exam	ple: 5	0A (1	00	is 0x64): 00	0110	0100		010).		(94~95)%			00	sha	ll be		a	ener	ati	-	-		
dou	ble	thr	ee-	star	ads				- (,					60\/			0110:					def	ined		Ŭ	on			
pow	ver	ph	ase	for	AC														(95-	~9	6)%			а	ccor	ding	lly	р	rodu	ict		
' sup	ply	•		inpu	ut/D											011	:		011	1:									s			
				Ċ)												48V/	60V	(96-	~9	7)%							re	espe	cti		
				inpu	ut/p														100	0:									vely	/		
				hoto	ovol														(97-	~9	8)%											
				ta	ic														100)1:												
				inp	out														(98-	~9	9)%											
																			101	0 :	>99)%		1								

Version Number of Software & Hardware (Signal ID: 0x005)

signal content										
Byte2	Byte2Byte3Byte4Byte5Byte6Byte7									
hardware	e version	software ver	sion number	software version number						
num	nber	1 (DC	C/DC)	2(PFC)						

Current alarm/status (Signal ID: 0x183)

signal content									
Byte2	Byte3	Byte4	Byte5	Byte6	Byte7				
current alarm o	of the rectifier	current alarm of the rectifier module/state word extension definition							
module/state w	ord extension								
defini	ition								

current alarm of the rectifier module/state word extension									
definition									
Bit0	output over-voltage deadlock alarm	alarm: 1							
	environment temperature over-								
Bit1	temperature alarm	arm: 1							
Bit2	module fault alarm	alarm: 1							
Bit3	protection alarm	alarm: 1							
Bit4	fan fault alarm	alarm: 1							
Bit5	reserved								
Bit6	reserved								
Bit7	reserved								
Bit8	low-temperature shutdown alarm	alarm: 1							
		shutdown:							
Bit9	module shutdown status	1							
Bit10	reserved								
Bit11	WALK-IN enabling	enabling: 1							
Bit12	over-temperature alarm inside	alarm: 1							
Bit13	reserved								
Bit14	output over-voltage protection alarm	alarm: 1							
Bit15	reserved								
Bit16	sequential starting function enabling	enabling: 1							
Bit17	input under-voltage alarm	alarm: 1							
Bit18	AC unbalance alarm	alarm: 1							
Bit19	AC phase loss alarm	alarm: 1							
	severe current unbalance warm								
	caused by the fact that the module								
Bit20	cannot carry load	alarm: 1							
Bit21	reserved	•							
Bit22	input over-voltage alarm	alarm: 1							

Bit23	PFC fault alarm	alarm: 1
Bit24	current unbalance alarm	alarm: 1
Bit25	middle wire drop alarm	alarm: 1
	internal communication abnormality	
Bit26	alarm	alarm: 1
Bit27	module output fuse break alarm	alarm: 1
Bit28	reserved	
Bit29	module input power failure alarm	alarm: 1
	severe unbalance alarm of bus	
Bit30	voltage	alarm: 1
	equipment cabinet address conflict	
Bit31	alarm	alarm: 1

	current alarm of the rectifier module/state word extension definition	l
Bit0	malfunction alarm of hardware address	alarm: 1
Bit1	malfunction alarm of input common mode voltage	alarm: 1
Bit2	short circuit alarm of main relay coil	alarm: 1
Bit3	input inverse alarm	alarm: 1
Bit4~Bit15	reserved	

Alarm Shielding (Signal ID: 0x142)

	signa	al content			
Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
alarm shielding command exter	sion definition		alarm shie	elding comma	and definition

	alarm shielding command def	inition
Bit0	output over-voltage deadlock alarm	1: shielding 0: automatic
Bit1	environment temperature over-temperature alarm	1: shielding 0: automatic
Bit2	reserved	
Bit3	reserved	
Bit4	fan fault alarm	1: shielding 0: automatic
Bit5~Bit16	reserved	
Bit17	input under-voltage alarm	1: shielding 0: automatic
Bit18	AC unbalance alarm	1: shielding 0: automatic
Bit19	AC phase loss alarm	1: shielding 0: automatic
Bit20	severe current unbalance warm caused by the fact	1: shielding 0: automatic
Bit21	reserved	
Bit22	input over-voltage alarm	1: shielding 0: automatic
Bit23	PFC fault alarm	1: shielding 0: automatic
Bit24	current unbalance alarm	1: shielding 0: automatic
Bit25	middle wire drop alarm	1: shielding 0: automatic
Bit26	internal communication abnormality alarm	1: shielding 0: automatic
Bit27	module output fuse break alarm	1: shielding 0: automatic
Bit28	reserved	

Bit29	module input power failure alarm	1: shielding 0: automatic
Bit30	severe unbalance alarm of bus voltage	1: shielding 0: automatic
Bit31	equipment cabinet address conflict alarm	1: shielding 0: automatic

	alarm shielding command exte	ension definition
	hardware address	
Bit0	abnormality alarm	1: shielding 0: automatic
	input common-mode voltage	
Bit1	abnormality alarm	1: shielding 0: automatic
	main relay coil short circuit	
Bit2	alarm	1: shielding 0: automatic
Bit3	input inverse alarm	1: shielding 0: automatic
Bit4~Bit15	reserved	

Control Indicator (Signal ID: 0x140)

	signal	content			
Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
0	control indicator command		()	

			control indica	tor command									
			By	te3									
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0						
rese	rved	red inc	dicator	yellow ir	ndicator	green ir	ndicator						
00: automatic 00: automatic 00: automatic													
roco	nvod	01: (0.5Hz)fl	icker slowly	01: (0.5Hz) f	licker slowly	01: (0.5Hz)flicker slowl							
Tese	Iveu	10: (4Hz)flick	ker fast	10: (4Hz) flic	ker fast	10: (4Hz)flicł	ker fast						
		11: be cons	tant on	11: be consta	ant on	11: be const	tant on						

2 Common Commands User Cases

2.1 Output Voltage Setting

Output voltage of all the rectifier modules is set as 53.5V via the broadcast message sent from the monitoring unit.

ID domain of CAN communication frame:

													ID c	lomai	n													
2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0
8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0										

р	rotoc	ol nur	nber	(6 bit	s)		sub-ı	node	addre	ess (7	' bits)		Co	omma	nd ID	& me	essa	ge ID	(8 bi	ts)	M/S	re	serveo filleo	d bit d in v	, mu with	st be 1	CNT
1	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	1	1	1	1 1	0
	0x21 0x00								0x80								0x1			0x3	F		0x0				
																									witho		
																			sent						ut		
																			from						any		
	protocol number broodcost command								nd				cont	rol co	mma	nd			the	re	eserve	ed b	its, r	nust	subs		
	protocol number broadcast command											COIII		mme	anu			monit		be fille	ed ir	n wit	h 1	eque			
																		oring						nt			
																	unit						fram				
																						е					

Frame data domain of CAN communication is as below:

				data domain				
Byte0		Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
4 bits	4 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits
error type	sigi	nal ID			da	ta		
0x0	0×	:100	0x0	0000		0x000	0D600	
0x01		0x00	0x00	0x00	0x00	0x00	0xD6	0x00
no error, data normal	setting DC sigr	output voltage nal ID	No error, () is filled in	setting DC	output voltage, u	sed as a benchma	ark for IQ10

The rectifier module receives the setting command of the broadcast without any data

response.

2.2 Output Voltage of Module 1 Setting

The output voltage of the rectifier module 1 is set as 53.5V via the monitoring unit.

ID domain of CAN communication frame is as below:

													ID (doma	iin													
2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
	orotoc	ol nu	mber(6 bits	5)		sub-	node	addre	ess(7	bits)	1	Co	omma	nd ID	& me	essag	ge ID(8 bit	s)	M/S	re	eser b	ved l be fill	bit, 1 ed ir	lmus n	st	CNT
1	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
		0x	21						0x01							0x8	0				0x1			0x	3F			0x0
	pro	otocol	numl	ber		S	oftwa	re ado	dress	of mo	odule	1			cont	rol co	mma	nd			sent from the monit oring unit	re	serv b	ed b be fill	its, ´ led ir	1 mu า	ıst	witho ut any subse quent frame

Frame data domain of CAN communication is as below:

			data domain				
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7

4 bits	4 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits					
error type	sigr	nal ID			da	ata							
0x0	0x	:100	0x0	0000	0x0000D600								
0x01		0x00	0x00	0x00	0xD6	0x00							
data normal	Setting DC o	output voltage nal ID	No data, () is filled in	DC output	voltage setting, us	sed as a benchma	ark for IQ10					

The rectifier module responses to data after receiving the point-point setting command.

ID domain of CAN communion	cation frame is as below:
----------------------------	---------------------------

													ID	doma	ain													
2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
k	orotoc	ol nur	nber	(6 bit	s)		sub-	node	addre	ess (7	′ bits)		Co	mma	nd ID	& me	essag	e ID(8 bit	s)	M/S	re	serv t	ved b be fil	its, led i	1 mւ n	ust	CNT
1	0	0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0
		0x	21						0x01							0x8	0				0x0			0x	3F			0x0
	pro	otocol	num	ber		S	oftwa	re ad	dress	s of m	odule	1			cont	rol co	mma	nd			Sent from modul e 1	re	serv t	red b be fil	its, led i	1 mu n	ust	witho ut any subse quent frame

Frame data domain of CAN communication is as below:

				data domain										
Byte0		Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7						
4 bits	4 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits						
error type	sigi	nal ID			da	ta								
0x0	0×	:100	0x0	000		0x0000D600								
0x01		0x00	0x00	0x00	0x00	0x00	0xD6	0x00						
no error, normal data	Setting outpu	t voltage signal ID	No data, 0) is filled in	setting ou	itput voltage, use	d as a benchmark	c for IQ10						

2.3 Inherent Information Query of Module 1

Batch command 0x50 is called to query module inherent information via the monitoring unit.

ID domain of CAN communication frame is as below:

													ID	doma	ain													
2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	0	0	7	6	5	4	2	2	1	0
8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	0	1	0	5	4	3	2	1	0
ag	reem	ent ni	umbe	r (6 b	its)			sub-n	ode(7	7 bits)			con	nman	d ID 8	& info	rmatio	on ID	(8 bi	ts)	M/S	1	mus the	t be rese	filleo erveo	d in f d bit	for	CNT
1	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	1	1	1	1	1	1	1	0/1

0x21	0x01	0x50	0x1	0x3F	0x0/0x 1
agreement number	software address of module 1	batch command 0x50 is called to query module inherent information	sent from the monit oring unit	1 must be filled in for the reserved bit	whethe r there's a subseq uent frame or not

Frame data domain of CAN communication is as below:

				data domain								
Byte0		Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7				
4 bits	4 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits				
error type	sigi	nal ID			da	ata						
0x0	0x	:001	0x0	0000		0x000	00000					
0x0	0x	:005	0x0	0000		0x000	00000					
0x00		0x01	0x00	0x00	0x00	0x00	0x00	0x00				
0x00		0x05	0x00	0x00 0x00 0x00 0x00 0x00								
no error, normal data	feature wor mc software & ha nui	ds of rectifier odule ardware version mber	no data , () is filled in		no data , () is filled in					

After receiving the point-to-point setting command, the rectifier module 1 shall respond to the data.

ID domain of CAN communication is as below:

													ID	dom	ain													
2	2 7	2	2	2 4	2	2	2	2	1 9	1 8	1 7	1 6	1 5	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0
ag	reem	ent n	umbe	r(6 bi	ts)	-	sub-	node	addre	ess(7	bits)	Ū	con	nmar	id ID a	 & info	ormati	on ID	(8 bi	ts)	M/S	1	is u res	useo serv	d for red b	the bit		CNT
1	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0	0	0	0	0	1	1	1	1	1	1	0/1
		0x	21				•	•	0x01						•	0x	50				0x0			0x3	3F			0x0/0x 1
	agre	emei	nt nur	nber		s	oftwa	re ad	dress	ofmo	odule	1	fi>	ced in c	forma	ation	query mand	with 0x50	batc	h	sent from modul e 1	1 m tł	ust ne r	be f	fillec	d in f d bit	or	whethe r there's a subseq uent
																												frame or not

Frame data domain of CAN communication is as below:

data domain

Byte No.	Byt	e0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7
number of bit	4 bits	4 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits	8 bits
definition	error type	si	gnal ID			da	ita		
feature words of the rectifier module	0x0	()x001	0x00	0x00	0x40	0x68	0x0E	0x27
software & hardware version number	0x0	()x005	0x01	0x00	0x02	0x02	0x02	0x02
descriptio n	no error, normal data	releva	nt signal ID	Specific da	ta in reply ac	cording to th	e agreement		

2.4 All Real-time Data Query of Module 1

Batch query command 0x40 via the monitoring unit can be used to get all real-time data of module 1. Messages as below are delivered followed by command 0x40:

	signal phase module	three-phase module
signal ID	signal description	signal description
0x010E	total running time	total running time
0x0170	input power	input power
0x0171	input frequency	input frequency
0x0172	input current	input current
0x0173	DC output power	DC output power
0x0174	real-time efficiency	real-time efficiency
	DC output voltage	DC output voltage
0x0175	measuring value	measuring value
	actual output current	actual output current
0x0176	limiting point	limiting point
	single phase module	
0x0178	input voltage	/
0x0179	/	Phase A voltage
0x017A	/	Phase B voltage
0x017B	/	Phase C voltage
	environmental	environmental
	temperature of air	temperature of air
0x0180	intake	intake
	output current	output current display
0x0182	display value	value
0x0183	current alarm/state	current alarm/state

3 Communication Strategies Recommended

Communication Characteristics

- The monitoring unit can monitor all on-line rectifier modules. The setting command of the module can be broadcast, or sent to the designated module as required; for the query command of the module, the monitoring unit can send the commands to a single module in loop sequence.
- Rectifier modules have software addresses (generated by internal sequencing between rectification modules) and hardware addresses (unavailable in some modules). It is suggested that the monitoring unit implement the module management through the software address, and the hardware address is only used to display the module slot number.
- 3. In a scenario where only software addresses are used, you can identify which module is currently being queried by controlling the green light flicker of the queried module with the command 0x0135 on the query page for module information.
- 4. When the communication between the rectifier module and the monitoring unit is interrupted for more than 1 minute, and the output of the rectifier module shall be restored to the default to ensure the power supply capacity. The defaults include: output voltage(the default voltage, if not set by the user, is 53.5v); current-limiting point(the default limit point, if not set by the user, is the maximum limit point); The module resuming work after the command of shut-down and sleep sent from the monitoring unit has limited power supply capability.
- 5. Software address rearrangement of the module might be caused by the newly inserted system, the state of re-powered up or plugging; and address rearrangement can ensure the continuity of the software address; however, due to the number of modules, the original software address might be changed. For cases of powering-up or the newly inserted system, CAN communication command 0x013A can be called to rearrange the address to insure the continuity.
- Since the rectifier module does not actively report the registration request or registration information, the 0x50 command shall called to obtain the number of modules and related information in the system through.
- Since the rectifier module does not report alarm, command 0x40 shall be called to check the real-time alarm information via the monitoring unit.

Communication Strategies Recommended

Step 1

After the monitoring unit is powered on, command 0x013A is used to notify each online module to carry out address redistribution; any module inserted into the system shall also cause each online module to redistribute the address. The error type in the data field shall indicate that the module is performing address identification. When address identification is in progress, the query command must be stopped.

Step 2

After the module address assignment (when the error type in the data field is not 3, it means the process is over), the monitoring unit can send setting commands to all online modules broadcast.

All modules do not respond to the setting command issued by the monitor broadcast. For point-to-point monitoring command, the corresponding module shall reply to. It is recommended to set the following commands to monitor broadcasting each polling cycle: DC output current limit point set value; DC output voltage set value. Other command monitoring can be set in the form of an event trigger (such as set by a user).

Step 3

After sending the broadcast setting command, the monitoring can query the inherent information of each module according to the sequence from small to large with the query command 0x50.

The interval between commands is 15ms~120ms and the waiting time for reply shall be no less than 120ms. When a rectifier module (such as the one with address 10) fails to respond twice in a row, it is deemed that the rectifier module does not exist, and the next module is continued to be queried (such as the one with address 11). Similarly, if there is no response for two consecutive times, the query shall be stopped and the number of rectifier modules is determined to be 10.After this process, the monitor no longer issues the 0x50 command.

Step 4

After obtaining the number of rectifier modules, the monitoring unit can query the real-time state information of each module according to the software address sequence from small to large with the polling query command 0x40.

The interval between commands is 30ms~140ms and the waiting time for reply shall be no less than 140ms. If the monitor unit replies properly and completely within the interval, the communication is normal; if the module N cannot reply correctly twice in a row, and so does the polling cycle, the monitoring unit shall produce

"communication interruption alarm between the monitoring unit and module N".

After the monitoring unit is powered up and the rectifier module reallocates the address, the monitoring unit shall repeat the above steps 2, 3 and 4. The polling cycle of the monitoring unit is as below:

Step 6

Other settings and control commands for the monitoring unit are triggered by user interface parameter settings and controls.