
Engineering Blog

Understanding GraphQL Directives: Practical Use-Cases
at Zalando
In this blog post, we dive into the practical applications of GraphQL directives at
Zalando. With simple examples, we aim to highlight how they enhance our use
cases. From defining precise authorization requirements to efficiently handling
metadata, GraphQL directives offer flexibility and control in our API development
process.

Boopathi Rajaa Nedunchezhiyan
Principal Engineer

Posted on Oct 19, 2023

Tags: GraphQL, APIs

GraphQL directives
In GraphQL, if you've used the syntax that starts with an @ , for example, @foo , then you've
used GraphQL directives. Directives provide a way to extend the language features of
GraphQL using a supported syntax. Certain directives are built into GraphQL, like @skip ,
@include , @deprecated , and @specifiedBy , and are supported by all GraphQL

engines.

If we look closer, we can see that two of these directives (@skip and @include) are used
only in the queries, and the other two (@deprecated and @specifiedBy) are used only in
the schema. This is because GraphQL directives are defined for two different categories of
locations - TypeSystem and ExecutableDefinition . The TypeSystem directives are
defined for the schema, and the ExecutableDefinition directives are defined for the
queries. We will discuss this in detail in the next section.

The query directives are generally useful for clients to express certain types of metadata for
the query. The schema directives are generally useful for declaratively specifying common
server-side behaviors, for example, authorization requirements, marking sensitive data, etc.

Part 1: Schema directives at Zalando

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 1/12

https://engineering.zalando.com/
https://engineering.zalando.com/authors/boopathi-rajaa-nedunchezhiyan.html
https://engineering.zalando.com/tags/graphql.html
https://engineering.zalando.com/tags/apis.html

The schema directives refer to the directives defined for the TypeSystem locations. The
type system directives are available for the locations listed below. Consider @foo a directive
for the location mentioned in the 1st column.

directive @foo on LOCATION_IN_FIRST_COLUMN

Directive Location Example

SCHEMA schema @foo { query: Query }

SCALAR scalar x @foo

OBJECT type Product @foo { }

FIELD_DEFINITION type X { field: String @foo }

ARGUMENT_DEFINITION type X { field(arg: Int @foo): String }

INTERFACE interface X @foo {}

UNION union X @foo = A | B

ENUM enum X @foo { A B }

ENUM_VALUE enum X { A @foo B }

INPUT_OBJECT input X @foo { }

INPUT_FIELD_DEFINITION input X { field: String @foo }

The guild - https://the-guild.dev has a great article and a mechanism for implementing
schema directives via their graphql-tools packages. I highly recommend reading it and using
graphql-tools for implementing schema directives.

The gist is that you can define a directive in the schema and implement the directive in the
resolver layer. The directive is implemented as a function that takes the resolver function as
an argument and returns a new resolver function. The new resolver function can be used to
implement the directive logic.

You can think of schema directives as some function call injected to your resolver function in
a declarative way. Consider the following illustration to understand where the directive

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 2/12

https://the-guild.dev/about-us
https://the-guild.dev/graphql/tools/docs/schema-directives
https://the-guild.dev/graphql/tools

function can be invoked in the context of a resolver.

/**
 * Illustration of schema directives execution in
 * the query execution pipeline
 */
const resolvers = {
 Query: {
 async product(_, { id }) {
 // schema directives
 schemaDirectivesExecutions();

 // resolver logic
 const product = await getProduct(id);

 // schema directives
 schemaDirectivesExecutions();

 return product;
 },
 },
};

@isAuthenticated

At Zalando, we use SSO for customer authentication and step-up authentication. Our
GraphQL server handles publicly available data like the product data, and also handles
confidential data like customer-related data.

The queries can contain customer fields along with product fields and other non-customer
data. Here, we need to ensure that the customer is authenticated and has the correct
authenticity levels (ACR Value) whenever a field or mutation containing customer information
is used in the query. So, we need a way to control this granularly for different data points in
the schema. The directive @isAuthenticated is used for this purpose.

The directive is defined in the schema as follows -

scalar ACRValue @specifiedBy(url: "https://example.com/zalando-acr-value")

directive @isAuthenticated(
 """
 The ACR value, which indicates the level of authenticity
 expected to perform the operation.

 Optional. If not provided, the default behavior is to simply
 validate a user is authenticated and has no ACR requirements.
 """
 acrValue: ACRValue
) on FIELD_DEFINITION

For example, it is used in a mutation definition as follows -

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 3/12

https://auth0.com/blog/what-is-step-up-authentication-when-to-use-it/
https://developer.okta.com/docs/guides/step-up-authentication/main/

type Query {
 customer: Customer @isAuthenticated
}
type Mutation {
 updateCustomerInfo(
 email: String
 phoneNumber: String
): UpdateCustomerInfoResult @isAuthenticated(acrValue: HIGH)
}

@sensitive

We expose customer-sensitive data via our GraphQL API - like the email address, customer
name, phone number, address, etc, to render the customer profile page. We also use
observability tools and monitoring tools like logging and tracing. We do not want such
sensitive customer data in the logs and traces. So, we need a way to control logging so that
the logs contain enough information to debug issues but not sensitive customer data. The
directive @sensitive is used for this purpose.

directive @sensitive(
 "An optional reason why the field is marked as sensitive"
 reason: String
) on ARGUMENT_DEFINITION

For example, it is used in a mutation definition as follows -

type Mutation {
 updateCustomerInfo(
 email: String @sensitive(reason: "Customer email address")
 phoneNumber: String @sensitive(reason: "Customer phone number")
): UpdateCustomerInfoResult
}

It could be somewhat manual and forgetful to add @sensitive to the correct arguments in
the schema proactively. So, we also rely on a schema linter to automatically fail when a
field/argument name contains sensitive keywords like password , email , phone , bank ,
bic , account , owner , order , token , voucher , customer , etc. This way, we can

ensure we do not forget to add @sensitive to the correct fields/arguments.

Implementing this directive is also quite simple and does not require any resolver logic. It can
be implemented in NodeJS as follows (the implementation is shortened to fit into a post) -

function getSensitiveVariables(schema, document) {
 const sensitiveVariables = [];
 require("graphql").validate(schema, document, [
 (context) => ({
 Variable(node) {
 const isSensitive = context
 .getArgument()

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 4/12

 ?.astNode?.directives?.some(
 (directive) => directive.name.value === "sensitive"
);
 if (isSensitive) {
 sensitiveVariables.push(node.name.value);
 }
 },
 }),
]);
 return sensitiveVariables;
}

@requireExplicitEndpoint

With GraphQL, all of the varieties of HTTP requests fit into one single pattern - POST
/graphql . It makes using techniques and tools available for REST APIs - like rate limiting,
bot protection, caching, and other security practices fail to work out of the box. So, we need a
way to control different schema sections to be exposed via different HTTP endpoints. The
directive @requireExplicitEndpoint is used for this purpose.

directive @requireExplicitEndpoint(endpoints: [String!]!) on FIELD_DEFINIT

In implementing this directive, we override the resolver for the respective field where it is
used. We can access the request parameters (like pathname) by running GraphQL over
HTTP. We then match the pathname with the list of endpoints provided in the directive and
return an error if there is no match.

This directive allows us to define custom routes for different schema sections and prevents
the client from accessing the entire schema via a single HTTP endpoint, POST /graphql.
For example, let's see how we can define this directive for the updateDeliveryAddress
mutation.

type Mutation {
 updateDeliveryAddress(
 id: ID!
 newAddress: CustomerAddress!
): UpdateDeliveryAddressResult
 @requireExplicitEndpoint(endpoints: ["/customer-addresses"])
}

So, a mutation query like the following will fail with an error when executing via /graphql
endpoint -

POST /graphql
mutation {
 updateDeliveryAddress(id: "1234", newAddress: { name: "Boopathi" }) {
 id

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 5/12

 }
}

@draft , @allowedFor

We use persisted queries and define different schema stability levels for different sections of
the schema. We have a separate blog post explaining the details of how Zalando uses
persisted queries and how we think about schema stability and granular control.

The @draft and @allowedFor directives are used for this purpose. It prevents clients
from persisting a query that is not stable yet.

Draft
directive @draft on FIELD_DEFINITION

Restricted usage: Only for the specified components
directive @component(name: String!) on QUERY
directive @allowedFor(componentNames: [String!]!) on FIELD_DEFINITION

@final

Enums in GraphQL are tricky to evolve. Adding a new value to an enum is not considered a
breaking change, but it is still a "dangerous" change. It is "dangerous" because the client
might not have a handler for the new value. It is easy to update the client code for web
applications, but for the mobile native apps shipped to the app store, it is impossible to
update the client code. Though we practice defensive coding practices to handle unknown
values, we still need a way to control the evolution of enums in a safe manner. The directive
@final is used for this purpose.

directive @final on ENUM

The implementation of this directive is absolutely nothing - i.e., it does not need any runtime
behavior. It is only used in our GraphQL linter that executes during the build time and
prevents additions of new values to enums which are marked as final. When we want to
make a dangerous change, we remove the @final directive in the first pull request and
reason about and find if old apps would break by making this "dangerous" change. After
extending the enum, we add it in a separate pull request. This process is cumbersome, but it
is on purpose. It must be more complicated to make dangerous changes, and it is a trade-off
we are willing to make.

The ideal situation would be that all enums are treated as final by default, and this directive is
never required in the first place. During schema evolution, your use case might warrant such

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 6/12

https://engineering.zalando.com/posts/2022/02/graphql-persisted-queries-and-schema-stability.html
https://engineering.zalando.com/posts/2022/02/graphql-persisted-queries-and-schema-stability.html

directives to control a smooth schema evolution.

@extensibleEnum

As we are discussing enums, another use-case of directives for enums, primarily one-off use
cases, and extending them is the common case. Creating enums for one use case is tricky in
these cases, and extending it has dangerous consequences. At Zalando, we have RESTful
API guidelines, and one of the recommendations is to use x-extensible-enum to represent all
enums. This recommendation is so that the enums can evolve, and the client is aware, right
from the name, that it is extensible. We use the directive @extensibleEnum for this
purpose. The type in GraphQL for the field would be String , and the directive is used to
provide the list of allowed values.

directive @extensibleEnum(values: [String!]!) on FIELD_DEFINITION

For example, it is used in a query definition as follows -

type CustomerConsent {
 status: String! @extensibleEnum(values: ["GRANTED", "REJECTED"])
}

With @extensibleEnum , we found that contributors to the schema are more likely to think
about the evolution of schema. We also noticed that contributors are more likely to use this
directive for defining enums than the GraphQL native enum, as this directive is more explicit
about the extensibility of the enum.

@resolveEntityId

Our GraphQL schema defines certain types as Entities related to the Entity-Relationship
model. We define entities abstractly as the basic building blocks for designing customer
experience. For example, product, customer, brand, etc. are some entities. The entity
definition has some properties -

it follows a specific template/pattern of resolvers that is mostly the same for all
entities

it is of a specific type name as defined in the schema

it has a unique ID of a specific pattern (for example, entity:product:1234 for
type Product)

it has a set of fields that are common to all entities

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 7/12

https://opensource.zalando.com/restful-api-guidelines/#112
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

To solve these cases holistically, we use the directive @resolveEntityId defined against
each entity definition in the schema.

directive @resolveEntityId(
 "An optional override name for the entity name in its ID"
 override: String
) on OBJECT

The usage is as follows -

type Product implements Entity @resolveEntityId {
 id: ID!
}

The implementation of this directive is two-fold. For one, we generate TypeScript code based
on the resolveEntityId directive. This code generation allows us to develop the
boilerplate code for the entity ID type definitions and resolvers - for example, the
__typename resolvers. The other part is the runtime, where an id resolver is added to

wrap the entity IDs - for example, consider the product - entity:product:1234 is the full
entity ID, and the 1234 is called the SKU of the product.

Part 2: Query directives at Zalando
Query directives are directives that are defined for the ExecutableDefinition locations.
The executable directives are available for the locations listed below. Consider @foo a
directive for the location mentioned in the 1st column.

directive @foo on LOCATION_IN_FIRST_COLUMN

Directive Location Example

QUERY query name @foo {}

MUTATION mutation name @foo {}

SUBSCRIPTION subscription name @foo {}

FIELD query { product @foo {} }

FRAGMENT_DEFINITION fragment x on Query @foo { }

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 8/12

Directive Location Example

FRAGMENT_SPREAD query { ...x @foo }

INLINE_FRAGMENT query { ... @foo { } }

VARIABLE_DEFINITION query ($id: ID @foo) { }

Unlike schema directives, graphql-tools does not support attaching functions to resolvers the
same way for query directives. They also have an excellent point: query directives are good
for annotating the query with metadata and not for resolver logic. Likewise, most of our use
cases include attaching metadata at the query level and one case for observability and
monitoring.

For query metadata, the implementation is as simple as going through the parsed GraphQL
document (AST - Abstract Syntax Tree) and extracting the metadata from the query
directives. We use a two-step approach for the use case that adds behavior to a field -
specifically the @omitErrorTag directive (discussed below). In the first step before
execution, we extract the field paths of the fields that have this directive. In the second step,
after execution, we match the error paths and omit the error tag for those extracted paths.

@component

The @component directive defines a component name by the client for the query. This
directive is used in our observability and monitoring tools and for schema stability - restricted
usage in production. See our blog post GraphQL persisted queries and schema stability for
more details.

directive @component(name: String!) on QUERY

@tracingTag

The @tracingTag directive defines an OpenTelemetry tracing tag for the query. Using this
directive on a query adds a specific client-defined tag to our tracing spans. The clients can
then follow the traces and filter by this tag to find the traces for a particular query. This
directive is useful for debugging, troubleshooting, monitoring specific set of queries, etc.

directive @tracingTag(value: String!) on QUERY | MUTATION | SUBSCRIPTION

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 9/12

https://the-guild.dev/graphql/tools
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://engineering.zalando.com/posts/2022/02/graphql-persisted-queries-and-schema-stability.html
https://opentelemetry.io/

@omitErrorTag

The @omitErrorTag directive is used to omit marking the tracing span as an error. This
directive can be used on a particular field in the query. This directive lets the client define that
some field errors are noncritical and should not be reported for alerting. The 24x7 on-call
team can then focus on the critical errors and not be distracted by the noise.

directive @omitErrorTag on FIELD

@maxCountInBatch

The @maxCountInBatch directive is used at the Query level to declare the maximum
number of queries that can be batched together in a single request. This directive is client-
controlled i.e. it is only available during build/persist time. At runtime, the directive is used to
prevent overfetching of data and bot abuse of the GraphQL API.

Our GraphQL server allows batching of multiple queries in a single batch. With persisted
queries, we only send the id of the query, and the client cannot send a raw query in
production. So, the system design allows the safe usage of maxCountInBatch controlled by
the clients.

directive @maxCountInBatch(value: Int!) on QUERY

Example usage of all of the above query directives

query product_card($id: ID!)
#
component directive
@component(name: "web-product-card")
#
tracing tag directive to add a tag to the tracing span
@tracingTag(value: "slo-1s")
#
maxCountInBatch directive to limit the number of queries in a batch reque
@maxCountInBatch(value: 50) {
 product(id: $id) {
 id
 name
 brand {
 id
 name
 }
 # omitErrorTag directive to omit marking the tracing
 # span as an error if inWishlist field errors
 inWishlist @omitErrorTag
 }
}

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 10/12

https://engineering.zalando.com/posts/2022/02/graphql-persisted-queries-and-schema-stability.html

Conclusion
Query directives allow clients to define metadata and, on rare occasions, behavior. Schema
directives, on the other hand, allow the server to define behavior, validation, and resolution
logic in a declarative manner. Schema directives carry the added advantage that the servers
can make breaking changes to these directives, as these directives are not consumed by the
client - they only experience the resulting behavior. It's important when designing a directive
to consider its properties, use cases, trade-offs, and where the control should lie.

The use cases outlined in this blog post represent some of the ways we use GraphQL
directives at Zalando. There are numerous other cases that we'll cover in future blog posts. I
hope this piece provides a good starting point for you to explore GraphQL directives and their
practical applications.

If you would like to work on similar challenges, consider joining our engineering teams.

Further reading
Schema Directives - GraphQL Tools

GraphQL persisted queries and Schema stability

Modeling Errors in GraphQL

Optimize GraphQL Server with Lookaheads

Related posts

GraphQL persisted queries and Schema stability

Learn how Zalando uses persisted queries, and how we define and think about
different levels of stability of our... Read more...

Boopathi Rajaa Nedunchezhiyan
Senior Software Engineer

Feb 17
2022

25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 11/12

https://jobs.zalando.com/en/tech/jobs/?gh_src=95c8de231us&filters%5Bcategories%5D%5B0%5D=Software%20Engineering%20-%20Architecture&filters%5Bcategories%5D%5B1%5D=Software%20Engineering%20-%20Backend&filters%5Bcategories%5D%5B2%5D=Software%20Engineering%20-%20Data&filters%5Bcategories%5D%5B3%5D=Software%20Engineering%20-%20Frontend&filters%5Bcategories%5D%5B4%5D=Software%20Engineering%20-%20Full%20Stack&filters%5Bcategories%5D%5B5%5D=Software%20Engineering%20-%20Leadership&filters%5Bcategories%5D%5B6%5D=Software%20Engineering%20-%20Machine%20Learning&filters%5Bcategories%5D%5B7%5D=Software%20Engineering%20-%20Mobile&filters%5Bcategories%5D%5B8%5D=Software%20Engineering%20-%20Principal%20Engineering&filters%5Bcategories%5D%5B9%5D=Applied%20Science%20%26%20Research&filters%5Bcategories%5D%5B10%5D=Product%20Design%20%26%20User%20Experience&filters%5Bcategories%5D%5B11%5D=Product%20Management&search=software%20engineer
https://the-guild.dev/graphql/tools/docs/schema-directives
https://engineering.zalando.com/posts/2022/02/graphql-persisted-queries-and-schema-stability.html
https://engineering.zalando.com/posts/2021/04/modeling-errors-in-graphql.html
https://engineering.zalando.com/posts/2021/03/optimize-graphql-server-with-lookaheads.html
https://engineering.zalando.com/posts/2022/02/graphql-persisted-queries-and-schema-stability.html
https://engineering.zalando.com/posts/2022/02/graphql-persisted-queries-and-schema-stability.html
https://engineering.zalando.com/authors/boopathi-rajaa-nedunchezhiyan.html

Modeling Errors in GraphQL

GraphQL excels in modeling data requirements. Modeling errors as schema types
in GraphQL is required for certain... Read more...

Boopathi Rajaa Nedunchezhiyan
Senior Software Engineer

Apr 13
2021

Optimize GraphQL Server with Lookaheads

GraphQL offers a way to optimize the data between a client and a server. We can
use the declarative nature of a... Read more...

Boopathi Rajaa Nedunchezhiyan
Senior Software Engineer

Mar 18
2021

Follow us



25.04.2024, 15:33 Understanding GraphQL Directives: Practical Use-Cases at Zalando

https://engineering.zalando.com/posts/2023/10/understanding-graphql-directives-practical-use-cases-zalando.html 12/12

https://engineering.zalando.com/posts/2021/04/modeling-errors-in-graphql.html
https://engineering.zalando.com/posts/2021/04/modeling-errors-in-graphql.html
https://engineering.zalando.com/authors/boopathi-rajaa-nedunchezhiyan.html
https://engineering.zalando.com/posts/2021/03/optimize-graphql-server-with-lookaheads.html
https://engineering.zalando.com/posts/2021/03/optimize-graphql-server-with-lookaheads.html
https://engineering.zalando.com/authors/boopathi-rajaa-nedunchezhiyan.html
https://twitter.com/ZalandoTech
https://twitter.com/ZalandoTech
https://www.instagram.com/insidezalando/
https://www.instagram.com/insidezalando/
https://github.com/zalando/
https://github.com/zalando/
https://www.linkedin.com/company/zalando/
https://www.linkedin.com/company/zalando/
https://engineering.zalando.com/atom.xml
https://engineering.zalando.com/atom.xml

