nrf24l01.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459
  1. /*
  2. * ad0x0, 2020
  3. *
  4. */
  5. #include "RF24.h"
  6. //#include "../ad0x0_spi2.h"
  7. #include "../usart/ad0x0_usart.h"
  8. #include <string.h>
  9. //------------------------------------------------
  10. rf24_spi_regs_t r_spi2_regs;
  11. uint8_t NRF_Init(void)
  12. {
  13. //2E0703002C135737334D4E00
  14. rf24_init_spi2_regs(&r_spi2_regs,AD_NFR24_CE_GPIO_Port, AD_NFR24_CE_Pin);
  15. r_spi2_regs.init_pipes();
  16. r_spi2_regs.PTX_init();
  17. // Reset current status. Notice reset and flush is the last thing we do
  18. /* write_register(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
  19. setChannel(76);
  20. flush_rx();
  21. flush_tx();
  22. powerUp(); //Power up by default when begin() is called
  23. write_register(NRF_CONFIG, (read_register(NRF_CONFIG)) & ~(1 << PRIM_RX));
  24. */
  25. return 1;
  26. }
  27. /*
  28. bool isChipConnected()
  29. {
  30. uint8_t setup = read_register(SETUP_AW);
  31. if(setup >= 1 && setup <= 3)
  32. {
  33. return true;
  34. }
  35. return false;
  36. }
  37. void startListening(void)
  38. {
  39. powerUp();
  40. write_register(NRF_CONFIG, read_register(NRF_CONFIG) | (1 << PRIM_RX));
  41. write_register(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
  42. ce(HIGH);
  43. // Restore the pipe0 adddress, if exists
  44. if(pipe0_reading_address[0] > 0)
  45. {
  46. write_registerMy(RX_ADDR_P0, pipe0_reading_address, addr_width);
  47. }
  48. else
  49. {
  50. closeReadingPipe(0);
  51. }
  52. if(read_register(FEATURE) & (1 << EN_ACK_PAY))
  53. {
  54. flush_tx();
  55. }
  56. }
  57. static const uint8_t child_pipe_enable[] = {ERX_P0, ERX_P1, ERX_P2, ERX_P3, ERX_P4, ERX_P5};
  58. void stopListening(void)
  59. {
  60. ce(LOW);
  61. delay_us(txDelay);
  62. if(read_register(FEATURE) & (1 << EN_ACK_PAY))
  63. {
  64. delay_us(txDelay); //200
  65. flush_tx();
  66. }
  67. write_register(NRF_CONFIG, (read_register(NRF_CONFIG)) & ~(1 << PRIM_RX));
  68. write_register(EN_RXADDR, read_register(EN_RXADDR) | (1 << child_pipe_enable[0])); // Enable RX on pipe0
  69. }
  70. void powerDown(void)
  71. {
  72. ce(LOW); // Guarantee CE is low on powerDown
  73. write_register(NRF_CONFIG, read_register(NRF_CONFIG) & ~(1 << PWR_UP));
  74. }
  75. //Power up now. Radio will not power down unless instructed by MCU for config changes etc.
  76. void powerUp(void)
  77. {
  78. uint8_t cfg = read_register(NRF_CONFIG);
  79. // if not powered up then power up and wait for the radio to initialize
  80. if(!(cfg & (1 << PWR_UP)))
  81. {
  82. write_register(NRF_CONFIG, cfg | (1 << PWR_UP));
  83. HAL_Delay(5);
  84. }
  85. }
  86. //Similar to the previous write, clears the interrupt flags
  87. bool write(const void* buf, uint8_t len)
  88. {
  89. startFastWrite(buf, len, 1, 1);
  90. while(!(get_status() & ((1 << TX_DS) | (1 << MAX_RT))))
  91. {}
  92. ce(LOW);
  93. uint8_t status = write_register(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
  94. if(status & (1 << MAX_RT))
  95. {
  96. flush_tx(); //Only going to be 1 packet int the FIFO at a time using this method, so just flush
  97. return 0;
  98. }
  99. //TX OK 1 or 0
  100. return 1;
  101. }
  102. void startFastWrite(const void* buf, uint8_t len, const bool multicast, bool startTx)
  103. {
  104. write_payload(buf, len, multicast ? W_TX_PAYLOAD_NO_ACK : W_TX_PAYLOAD);
  105. if(startTx)
  106. {
  107. ce(HIGH);
  108. }
  109. }
  110. void maskIRQ(bool tx, bool fail, bool rx)
  111. {
  112. uint8_t config = read_register(NRF_CONFIG);
  113. config &= ~(1 << MASK_MAX_RT | 1 << MASK_TX_DS | 1 << MASK_RX_DR); //clear the interrupt flags
  114. config |= fail << MASK_MAX_RT | tx << MASK_TX_DS | rx << MASK_RX_DR; // set the specified interrupt flags
  115. write_register(NRF_CONFIG, config);
  116. }
  117. uint8_t getDynamicPayloadSize(void)
  118. {
  119. uint8_t result = 0, addr;
  120. csn(LOW);
  121. addr = R_RX_PL_WID;
  122. HAL_SPI_TransmitReceive(&hspi1, &addr, &result, 1, 1000);
  123. HAL_SPI_TransmitReceive(&hspi1, (uint8_t*)0xff, &result, 1, 1000);
  124. csn(HIGH);
  125. if(result > 32)
  126. {
  127. flush_rx();
  128. HAL_Delay(2);
  129. return 0;
  130. }
  131. return result;
  132. }
  133. bool availableMy(void)
  134. {
  135. return available(NULL);
  136. }
  137. bool available(uint8_t* pipe_num)
  138. {
  139. if(!(read_register(FIFO_STATUS) & (1 << RX_EMPTY)))
  140. {
  141. if(pipe_num) // If the caller wants the pipe number, include that
  142. {
  143. uint8_t status = get_status();
  144. *pipe_num = (status >> RX_P_NO) & 0x07;
  145. }
  146. return 1;
  147. }
  148. return 0;
  149. }
  150. void read(void* buf, uint8_t len)
  151. {
  152. read_payload(buf, len);
  153. write_register(NRF_STATUS, (1 << RX_DR) | (1 << MAX_RT) | (1 << TX_DS));
  154. }
  155. uint8_t whatHappened()
  156. {
  157. uint8_t status = write_register(NRF_STATUS, (1 << RX_DR) | (1 << TX_DS) | (1 << MAX_RT));
  158. return status;
  159. }
  160. void openWritingPipe(uint64_t value)
  161. {
  162. write_registerMy(RX_ADDR_P0, (uint8_t*)&value, addr_width);
  163. write_registerMy(TX_ADDR, (uint8_t*)&value, addr_width);
  164. write_register(RX_PW_P0, payload_size);
  165. }
  166. static const uint8_t child_pipe[] = {RX_ADDR_P0, RX_ADDR_P1, RX_ADDR_P2, RX_ADDR_P3, RX_ADDR_P4, RX_ADDR_P5};
  167. static const uint8_t child_payload_size[] = {RX_PW_P0, RX_PW_P1, RX_PW_P2, RX_PW_P3, RX_PW_P4, RX_PW_P5};
  168. void openReadingPipe(uint8_t child, uint64_t address)
  169. {
  170. if(child == 0)
  171. {
  172. memcpy(pipe0_reading_address, &address, addr_width);
  173. }
  174. if(child <= 6)
  175. {
  176. // For pipes 2-5, only write the LSB
  177. if(child < 2)
  178. write_registerMy(child_pipe[child], (const uint8_t*)&address, addr_width);
  179. else
  180. write_registerMy(child_pipe[child], (const uint8_t*)&address, 1);
  181. write_register(child_payload_size[child], payload_size);
  182. write_register(EN_RXADDR, read_register(EN_RXADDR) | (1 << child_pipe_enable[child]));
  183. }
  184. }
  185. void setAddressWidth(uint8_t a_width)
  186. {
  187. if(a_width -= 2)
  188. {
  189. write_register(SETUP_AW, a_width%4);
  190. addr_width = (a_width%4) + 2;
  191. }
  192. else
  193. {
  194. write_register(SETUP_AW, 0);
  195. addr_width = 2;
  196. }
  197. }
  198. void closeReadingPipe(uint8_t pipe)
  199. {
  200. write_register(EN_RXADDR, read_register(EN_RXADDR) & ~(1 << child_pipe_enable[pipe]));
  201. }
  202. void toggle_features(void)
  203. {
  204. uint8_t addr = ACTIVATE;
  205. csn(LOW);
  206. HAL_SPI_Transmit(&hspi1, &addr, 1, 1000);
  207. HAL_SPI_Transmit(&hspi1, (uint8_t*)0x73, 1, 1000);
  208. csn(HIGH);
  209. }
  210. void enableDynamicPayloads(void)
  211. {
  212. write_register(FEATURE, read_register(FEATURE) | (1 << EN_DPL));
  213. write_register(DYNPD, read_register(DYNPD) | (1 << DPL_P5) | (1 << DPL_P4) | (1 << DPL_P3) | (1 << DPL_P2) | (1 << DPL_P1) | (1 << DPL_P0));
  214. dynamic_payloads_enabled = true;
  215. }
  216. void disableDynamicPayloads(void)
  217. {
  218. write_register(FEATURE, 0);
  219. write_register(DYNPD, 0);
  220. dynamic_payloads_enabled = false;
  221. }
  222. void enableAckPayload(void)
  223. {
  224. write_register(FEATURE, read_register(FEATURE) | (1 << EN_ACK_PAY) | (1 << EN_DPL));
  225. write_register(DYNPD, read_register(DYNPD) | (1 << DPL_P1) | (1 << DPL_P0));
  226. dynamic_payloads_enabled = true;
  227. }
  228. void enableDynamicAck(void)
  229. {
  230. write_register(FEATURE, read_register(FEATURE) | (1 << EN_DYN_ACK));
  231. }
  232. void writeAckPayload(uint8_t pipe, const void* buf, uint8_t len)
  233. {
  234. const uint8_t* current = (const uint8_t*)buf;
  235. uint8_t data_len = rf24_min(len, 32);
  236. uint8_t addr = W_ACK_PAYLOAD | (pipe & 0x07);
  237. csn(LOW);
  238. HAL_SPI_Transmit(&hspi1, &addr, 1, 1000);
  239. HAL_SPI_Transmit(&hspi1, (uint8_t*)current, data_len, 1000);
  240. csn(HIGH);
  241. }
  242. bool isAckPayloadAvailable(void)
  243. {
  244. return !(read_register(FIFO_STATUS) & (1 << RX_EMPTY));
  245. }
  246. bool isPVariant(void)
  247. {
  248. return p_variant;
  249. }
  250. void setAutoAck(bool enable)
  251. {
  252. if(enable)
  253. write_register(EN_AA, 0x3F);
  254. else
  255. write_register(EN_AA, 0);
  256. }
  257. void setAutoAckPipe(uint8_t pipe, bool enable)
  258. {
  259. if(pipe <= 6)
  260. {
  261. uint8_t en_aa = read_register(EN_AA);
  262. if(enable)
  263. {
  264. en_aa |= (1 << pipe);
  265. }
  266. else
  267. {
  268. en_aa &= ~(1 << pipe);
  269. }
  270. write_register(EN_AA, en_aa);
  271. }
  272. }
  273. uint8_t getPALevel(void)
  274. {
  275. return (read_register(RF_SETUP) & ((1 << RF_PWR_LOW) | (1 << RF_PWR_HIGH))) >> 1;
  276. }
  277. bool setDataRate(rf24_datarate_e speed)
  278. {
  279. bool result = false;
  280. uint8_t setup = read_register(RF_SETUP);
  281. setup &= ~((1 << RF_DR_LOW) | (1 << RF_DR_HIGH));
  282. txDelay = 85;
  283. if(speed == RF24_250KBPS)
  284. {
  285. setup |= (1 << RF_DR_LOW);
  286. txDelay = 155;
  287. }
  288. else
  289. {
  290. if(speed == RF24_2MBPS)
  291. {
  292. setup |= (1 << RF_DR_HIGH);
  293. txDelay = 65;
  294. }
  295. }
  296. write_register(RF_SETUP, setup);
  297. uint8_t ggg = read_register(RF_SETUP);
  298. if(ggg == setup)
  299. {
  300. result = true;
  301. }
  302. return result;
  303. }
  304. rf24_datarate_e getDataRate(void)
  305. {
  306. rf24_datarate_e result ;
  307. uint8_t dr = read_register(RF_SETUP) & ((1 << RF_DR_LOW) | (1 << RF_DR_HIGH));
  308. // switch uses RAM (evil!)
  309. // Order matters in our case below
  310. if(dr == (1 << RF_DR_LOW))
  311. {
  312. result = RF24_250KBPS;
  313. }
  314. else if(dr == (1 << RF_DR_HIGH))
  315. {
  316. result = RF24_2MBPS;
  317. }
  318. else
  319. {
  320. result = RF24_1MBPS;
  321. }
  322. return result;
  323. }
  324. void setCRCLength(rf24_crclength_e length)
  325. {
  326. uint8_t config = read_register(NRF_CONFIG) & ~((1 << CRCO) | (1 << EN_CRC));
  327. if(length == RF24_CRC_DISABLED)
  328. {
  329. // Do nothing, we turned it off above.
  330. }
  331. else if(length == RF24_CRC_8)
  332. {
  333. config |= (1 << EN_CRC);
  334. }
  335. else
  336. {
  337. config |= (1 << EN_CRC);
  338. config |= (1 << CRCO);
  339. }
  340. write_register(NRF_CONFIG, config);
  341. }
  342. rf24_crclength_e getCRCLength(void)
  343. {
  344. rf24_crclength_e result = RF24_CRC_DISABLED;
  345. uint8_t config = read_register(NRF_CONFIG) & ((1 << CRCO) | (1 << EN_CRC));
  346. uint8_t AA = read_register(EN_AA);
  347. if(config & (1 << EN_CRC) || AA)
  348. {
  349. if(config & (1 << CRCO))
  350. result = RF24_CRC_16;
  351. else
  352. result = RF24_CRC_8;
  353. }
  354. return result;
  355. }
  356. void disableCRC(void)
  357. {
  358. uint8_t disable = read_register(NRF_CONFIG) & ~(1 << EN_CRC);
  359. write_register(NRF_CONFIG, disable);
  360. }
  361. */
  362. /*void DWT_Init(void)
  363. {
  364. SCB_DEMCR |= CoreDebug_DEMCR_TRCENA_Msk; // разрешаем использовать счётчик
  365. DWT_CONTROL |= DWT_CTRL_CYCCNTENA_Msk; // запускаем счётчик
  366. }
  367. void delay_us(uint32_t us) // DelayMicro
  368. {
  369. uint32_t us_count_tic = us * (SystemCoreClock / 1000000);
  370. DWT->CYCCNT = 0U; // обнуляем счётчик
  371. while(DWT->CYCCNT < us_count_tic);
  372. }
  373. */