/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "queue.h" #include "task.h" #include "admisc/ad0x0_perf.h" #include "admisc/ad0x0_timman.h" #include "i2c/ad0x0_i2c_ext.h" //#include "st7735/fonts.h" //#include "st7735/st7735.h" #include "ssd1327/ssd1327.h" //#include "nrf24/RF24.h" #include "i2c/ad0x0_i2c.h" #include "i2c/ad0x0_i2c1.h" #include "i2c/ad0x0_i2c2.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ uint32_t ad0x0_frame_count=0; uint8_t ad0x0_perf=0; volatile uint8_t ready2render=false; void ad0x0_err(void){ __asm("nop"); } /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ I2C_HandleTypeDef hi2c1; I2C_HandleTypeDef hi2c2; SPI_HandleTypeDef hspi1; SPI_HandleTypeDef hspi2; DMA_HandleTypeDef hdma_spi1_tx; DMA_HandleTypeDef hdma_spi2_rx; DMA_HandleTypeDef hdma_spi2_tx; TIM_HandleTypeDef htim4; UART_HandleTypeDef huart1; /* Definitions for defaultTask */ osThreadId_t defaultTaskHandle; const osThreadAttr_t defaultTask_attributes = { .name = "defaultTask", .priority = (osPriority_t) osPriorityNormal, .stack_size = 128 * 4 }; /* Definitions for myTask02 */ osThreadId_t myTask02Handle; const osThreadAttr_t myTask02_attributes = { .name = "myTask02", .priority = (osPriority_t) osPriorityNormal, .stack_size = 128 * 4 }; /* Definitions for myTask03 */ osThreadId_t myTask03Handle; const osThreadAttr_t myTask03_attributes = { .name = "myTask03", .priority = (osPriority_t) osPriorityNormal, .stack_size = 128 * 4 }; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_I2C2_Init(void); static void MX_USART1_UART_Init(void); static void MX_I2C1_Init(void); static void MX_TIM4_Init(void); static void MX_SPI1_Init(void); static void MX_SPI2_Init(void); void StartDefaultTask(void *argument); void StartTask02(void *argument); void StartTask03(void *argument); /* USER CODE BEGIN PFP */ void HAL_I2C_MasterRxCpltCallback (I2C_HandleTypeDef * hi2c){ if(hi2c->Instance==hi2c1.Instance){ ad0x0_i2c1_MasterRxCpltCallback(); }else ad0x0_i2c2_MasterRxCpltCallback(); } void HAL_I2C_MasterTxCpltCallback (I2C_HandleTypeDef * hi2c){ if(hi2c->Instance==hi2c1.Instance){ ad0x0_i2c1_MasterTxCpltCallback(); }else ad0x0_i2c2_MasterTxCpltCallback(); } void HAL_I2C_ErrorCallback (I2C_HandleTypeDef * hi2c){ if(hi2c->Instance==hi2c1.Instance){ ad0x0_i2c1_ErrorCallback(); }else ad0x0_i2c2_ErrorCallback(); } void HAL_I2C_AbortCpltCallback (I2C_HandleTypeDef * hi2c){ if(hi2c->Instance==hi2c1.Instance){ ad0x0_i2c1_AbortCpltCallback(); }else ad0x0_i2c2_AbortCpltCallback(); } /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_I2C2_Init(); MX_USART1_UART_Init(); MX_I2C1_Init(); MX_TIM4_Init(); MX_SPI1_Init(); MX_SPI2_Init(); /* USER CODE BEGIN 2 */ ad0x0_timman_init(); ad0x0_i2c_ext_init(ad0x0_err); //ad0x0_usart_init(); //GPS_Init(&huart1,gps_data_ready); ad0x0_i2c1_init(&hi2c1); /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of defaultTask */ defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes); /* creation of myTask02 */ myTask02Handle = osThreadNew(StartTask02, NULL, &myTask02_attributes); /* creation of myTask03 */ myTask03Handle = osThreadNew(StartTask03, NULL, &myTask03_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI_DIV2; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL16; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 400000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief I2C2 Initialization Function * @param None * @retval None */ static void MX_I2C2_Init(void) { /* USER CODE BEGIN I2C2_Init 0 */ /* USER CODE END I2C2_Init 0 */ /* USER CODE BEGIN I2C2_Init 1 */ /* USER CODE END I2C2_Init 1 */ hi2c2.Instance = I2C2; hi2c2.Init.ClockSpeed = 400000; hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c2.Init.OwnAddress1 = 0; hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c2.Init.OwnAddress2 = 0; hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C2_Init 2 */ /* USER CODE END I2C2_Init 2 */ } /** * @brief SPI1 Initialization Function * @param None * @retval None */ static void MX_SPI1_Init(void) { /* USER CODE BEGIN SPI1_Init 0 */ /* USER CODE END SPI1_Init 0 */ /* USER CODE BEGIN SPI1_Init 1 */ /* USER CODE END SPI1_Init 1 */ /* SPI1 parameter configuration*/ hspi1.Instance = SPI1; hspi1.Init.Mode = SPI_MODE_MASTER; hspi1.Init.Direction = SPI_DIRECTION_2LINES; hspi1.Init.DataSize = SPI_DATASIZE_8BIT; hspi1.Init.CLKPolarity = SPI_POLARITY_LOW; hspi1.Init.CLKPhase = SPI_PHASE_1EDGE; hspi1.Init.NSS = SPI_NSS_HARD_OUTPUT; hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi1.Init.TIMode = SPI_TIMODE_DISABLE; hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi1.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI1_Init 2 */ /* USER CODE END SPI1_Init 2 */ } /** * @brief SPI2 Initialization Function * @param None * @retval None */ static void MX_SPI2_Init(void) { /* USER CODE BEGIN SPI2_Init 0 */ /* USER CODE END SPI2_Init 0 */ /* USER CODE BEGIN SPI2_Init 1 */ /* USER CODE END SPI2_Init 1 */ /* SPI2 parameter configuration*/ hspi2.Instance = SPI2; hspi2.Init.Mode = SPI_MODE_MASTER; hspi2.Init.Direction = SPI_DIRECTION_2LINES; hspi2.Init.DataSize = SPI_DATASIZE_8BIT; hspi2.Init.CLKPolarity = SPI_POLARITY_LOW; hspi2.Init.CLKPhase = SPI_PHASE_1EDGE; hspi2.Init.NSS = SPI_NSS_SOFT; hspi2.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; hspi2.Init.FirstBit = SPI_FIRSTBIT_MSB; hspi2.Init.TIMode = SPI_TIMODE_DISABLE; hspi2.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; hspi2.Init.CRCPolynomial = 10; if (HAL_SPI_Init(&hspi2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN SPI2_Init 2 */ /* USER CODE END SPI2_Init 2 */ } /** * @brief TIM4 Initialization Function * @param None * @retval None */ static void MX_TIM4_Init(void) { /* USER CODE BEGIN TIM4_Init 0 */ /* USER CODE END TIM4_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM4_Init 1 */ /* USER CODE END TIM4_Init 1 */ htim4.Instance = TIM4; htim4.Init.Prescaler = 64; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 1000; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim4) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM4_Init 2 */ HAL_TIM_Base_Start_IT(&htim4); /* USER CODE END TIM4_Init 2 */ } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Channel3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); /* DMA1_Channel4_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel4_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Channel4_IRQn); /* DMA1_Channel5_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, AD_DBG_S1_Pin|AD_DBG_S2_Pin|AD_DC_Pin|AD_NFR24_CE_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, AD_RES_Pin|MPU6050_POWER_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(SPI2_NSS_GPIO_Port, SPI2_NSS_Pin, GPIO_PIN_SET); /*Configure GPIO pins : AD_DBG_S1_Pin AD_DBG_S2_Pin AD_DC_Pin AD_NFR24_CE_Pin */ GPIO_InitStruct.Pin = AD_DBG_S1_Pin|AD_DBG_S2_Pin|AD_DC_Pin|AD_NFR24_CE_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : AD_RES_Pin */ GPIO_InitStruct.Pin = AD_RES_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(AD_RES_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : MPU6050_POWER_Pin SPI2_NSS_Pin */ GPIO_InitStruct.Pin = MPU6050_POWER_Pin|SPI2_NSS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : NRF24_IRQ_Pin */ GPIO_InitStruct.Pin = NRF24_IRQ_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(NRF24_IRQ_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : MPU6050_IRQ_Pin */ GPIO_InitStruct.Pin = MPU6050_IRQ_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(MPU6050_IRQ_GPIO_Port, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI9_5_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI9_5_IRQn); HAL_NVIC_SetPriority(EXTI15_10_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI15_10_IRQn); } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ unsigned char buf1[33]={0,}; unsigned char packet_str[]="P_ID \0"; unsigned char frame_str[]="FRAME \0"; unsigned char rssi_str[]="RSSI \0"; unsigned char bufframe[12]; unsigned char bufrssi[12]; char sd_gps[32]; char sd_time[12]; packet_data_t spi1_data; ad0x0_gyrodata_s *pgd=&spi1_data.gyro;//p_gyro_data oled_desc_s oled1; /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void *argument) { /* USER CODE BEGIN 5 */ /* Infinite loop */ OLED_Init2(hi2c1.Instance, &oled1); ready2render=true; //oled1.OLED_test2(); uint32_t frame=0; //oled1.clear(); osDelay(1000); /* Infinite loop */ for(;;) { if(0){ ready2render=false; oled1.OLED_test2(); osDelay(1000); }else{ oled1.OLED_test3(); osDelay(10); } } /* USER CODE END 5 */ } /* USER CODE BEGIN Header_StartTask02 */ /** * @brief Function implementing the myTask02 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask02 */ void StartTask02(void *argument) { /* USER CODE BEGIN StartTask02 */ /* Infinite loop */ for(;;) { ad0x0_i2c1_xqRecieveHandler(); } /* USER CODE END StartTask02 */ } /* USER CODE BEGIN Header_StartTask03 */ /** * @brief Function implementing the myTask03 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartTask03 */ void StartTask03(void *argument) { /* USER CODE BEGIN StartTask03 */ /* Infinite loop */ for(;;) { if(ready2render)buf_render(&oled1); osDelay(10); } /* USER CODE END StartTask03 */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM3 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM3) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ ad0x0_err(); __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/