#include "stm32f0xx_hal.h" #include "adc.h" #include "led.h" #if 0 #define ADC_FACTOR 0.000806 ADC_HandleTypeDef AdcHandle; ADC_ChannelConfTypeDef sConfig; ADC_FILTER_t adc_bat; float bat_voltage = 0.0; // void adc_init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_ADC1_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); AdcHandle.Instance = ADC1; HAL_ADC_DeInit(&AdcHandle); AdcHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; /* Synchronous clock mode, input ADC clock with prscaler 2 */ AdcHandle.Init.Resolution = ADC_RESOLUTION_12B; /* 12-bit resolution for converted data */ AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT; /* Right-alignment for converted data */ AdcHandle.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */ AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV; /* EOC flag picked-up to indicate conversion end */ AdcHandle.Init.LowPowerAutoPowerOff = DISABLE; AdcHandle.Init.LowPowerAutoWait = DISABLE; /* Auto-delayed conversion feature disabled */ AdcHandle.Init.ContinuousConvMode = ENABLE; /* Continuous mode enabled (automatic conversion restart after each conversion) */ AdcHandle.Init.DiscontinuousConvMode = DISABLE; /* Parameter discarded because sequencer is disabled */ AdcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START; /* Software start to trig the 1st conversion manually, without external event */ AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; /* Parameter discarded because software trigger chosen */ AdcHandle.Init.DMAContinuousRequests = DISABLE; /* ADC DMA continuous request to match with DMA circular mode */ AdcHandle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; /* DR register is overwritten with the last conversion result in case of overrun */ AdcHandle.Init.SamplingTimeCommon = ADC_SAMPLETIME_28CYCLES_5; HAL_ADC_Init(&AdcHandle); HAL_ADCEx_Calibration_Start(&AdcHandle); sConfig.Channel = ADC_CHANNEL_4; /* Channel to be converted */ sConfig.Rank = ADC_RANK_CHANNEL_NUMBER; HAL_ADC_ConfigChannel(&AdcHandle, &sConfig); HAL_ADC_Start(&AdcHandle); } // float adc_get_bat_voltage(void) { return HAL_ADC_GetValue(&AdcHandle) * ADC_FACTOR; } // float adc_average(ADC_FILTER_t *flt, float new_value) { if (!(flt->head < ADC_FILTER_LEN)) flt->head = 0; if (flt->count < ADC_FILTER_LEN) flt->count++; flt->sum -= flt->buf[flt->head]; flt->sum += new_value; flt->buf[flt->head++] = new_value; return flt->sum/(flt->count); } // void adc_task(void) { bat_voltage = 2*adc_average(&adc_bat, HAL_ADC_GetValue(&AdcHandle) * ADC_FACTOR); if (bat_voltage > 3.4) led_but_on(); else led_but_toggle(); } #endif