#include "stm32f0xx_hal.h" #include "adc.h" #include "led.h" #include "tim.h" #include #define VOLTAGE_FACTOR (0.000806 / 0.24194) #define FREQ_FACTOR 0.000806 ADC_HandleTypeDef AdcHandle; ADC_ChannelConfTypeDef sConfig; ADC_FILTER_t adc_bat; //ADC_FILTER_t adc_freq; adc_ufulter_t adc_freq; float bat_voltage = 0.0; uint16_t freq_voltage = 0.0; __IO uint16_t adc_values[2]; // void adc_init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_ADC1_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_0 | GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); AdcHandle.Instance = ADC1; HAL_ADC_DeInit(&AdcHandle); AdcHandle.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; /* Synchronous clock mode, input ADC clock with prscaler 2 */ AdcHandle.Init.Resolution = ADC_RESOLUTION_12B; /* 12-bit resolution for converted data */ AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT; /* Right-alignment for converted data */ AdcHandle.Init.ScanConvMode = ADC_SCAN_DIRECTION_FORWARD; /* Sequencer disabled (ADC conversion on only 1 channel: channel set on rank 1) */ AdcHandle.Init.EOCSelection = ADC_EOC_SINGLE_CONV; /* EOC flag picked-up to indicate conversion end */ AdcHandle.Init.LowPowerAutoPowerOff = DISABLE; AdcHandle.Init.LowPowerAutoWait = DISABLE; /* Auto-delayed conversion feature disabled */ AdcHandle.Init.ContinuousConvMode = DISABLE; /* Continuous mode enabled (automatic conversion restart after each conversion) */ AdcHandle.Init.DiscontinuousConvMode = ENABLE; /* Parameter discarded because sequencer is disabled */ AdcHandle.Init.ExternalTrigConv = ADC_SOFTWARE_START; /* Software start to trig the 1st conversion manually, without external event */ AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; /* Parameter discarded because software trigger chosen */ AdcHandle.Init.DMAContinuousRequests = ENABLE; /* ADC DMA continuous request to match with DMA circular mode */ AdcHandle.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN; /* DR register is overwritten with the last conversion result in case of overrun */ AdcHandle.Init.SamplingTimeCommon = ADC_SAMPLETIME_28CYCLES_5; HAL_ADC_Init(&AdcHandle); sConfig.Channel = ADC_CHANNEL_0; /* Channel to be converted */ sConfig.Rank = ADC_RANK_CHANNEL_NUMBER; HAL_ADC_ConfigChannel(&AdcHandle, &sConfig); sConfig.Channel = ADC_CHANNEL_1; /* Channel to be converted */ HAL_ADC_ConfigChannel(&AdcHandle, &sConfig); HAL_ADCEx_Calibration_Start(&AdcHandle); adc_dma_init(&AdcHandle); //HAL_ADC_Start(&AdcHandle); } void adc_dma_init(ADC_HandleTypeDef *hadc) { static DMA_HandleTypeDef DmaHandle; __HAL_RCC_DMA1_CLK_ENABLE(); DmaHandle.Instance = DMA1_Channel1; DmaHandle.Init.Direction = DMA_PERIPH_TO_MEMORY; DmaHandle.Init.PeriphInc = DMA_PINC_DISABLE; DmaHandle.Init.MemInc = DMA_MINC_ENABLE; DmaHandle.Init.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD; /* Transfer from ADC by half-word to match with ADC configuration: ADC resolution 10 or 12 bits */ DmaHandle.Init.MemDataAlignment = DMA_MDATAALIGN_HALFWORD; /* Transfer to memory by half-word to match with buffer variable type: half-word */ DmaHandle.Init.Mode = DMA_CIRCULAR; /* DMA in circular mode to match with ADC configuration: DMA continuous requests */ DmaHandle.Init.Priority = DMA_PRIORITY_HIGH; HAL_DMA_DeInit(&DmaHandle); HAL_DMA_Init(&DmaHandle); __HAL_LINKDMA(hadc, DMA_Handle, DmaHandle); HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 1, 0); HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn); } // float adc_average(ADC_FILTER_t *flt, float new_value) { if (!(flt->head < ADC_FILTER_LEN)) flt->head = 0; if (flt->count < ADC_FILTER_LEN) flt->count++; flt->sum -= flt->buf[flt->head]; flt->sum += new_value; flt->buf[flt->head++] = new_value; return flt->sum/(flt->count); } // uint16_t adc_average_uint(adc_ufulter_t *flt, uint16_t new_value) { if (!(flt->head < ADC_FILTER_LEN)) flt->head = 0; if (flt->count < ADC_FILTER_LEN) flt->count++; flt->sum -= flt->buf[flt->head]; flt->sum += new_value; flt->buf[flt->head++] = new_value; return flt->sum/(flt->count); } // void adc_task(void) { HAL_ADC_Start_DMA(&AdcHandle, (uint32_t *)adc_values, 2); HAL_ADC_Start(&AdcHandle); #if 0 bat_voltage = 2*adc_average(&adc_bat, HAL_ADC_GetValue(&AdcHandle) * ADC_FACTOR); if (bat_voltage > 3.4) led_but_on(); else led_but_toggle(); #endif } // void adc_print_data(void) { printf("%f %u\r\n", bat_voltage, freq_voltage); } void DMA1_Channel1_IRQHandler(void) { HAL_DMA_IRQHandler(AdcHandle.DMA_Handle); } void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *AdcHandle) { bat_voltage = adc_average(&adc_bat, adc_values[0] * VOLTAGE_FACTOR); // Для получения значения в вольтах //freq_voltage = adc_average(&adc_freq, adc_values[1] * FREQ_FACTOR); freq_voltage = 4095 - adc_average_uint(&adc_freq, adc_values[1]); tim_set_string_freq(); } // LED - индикация уровня напряжения на АКБ void led_battery_task(void) { if (bat_voltage <= 9.3) { LED_RED_ON LED_BLUE_OFF } else if ((bat_voltage > 9.3) && (bat_voltage < 10.5)) { LED_RED_OFF LED_BLUE_TOOGLE } else { LED_RED_OFF LED_BLUE_ON } }